Recent advances in SSL enabled novel medical AI models, known as foundation models, offer great potential for better characterizing health from diverse biomedical data. CGM provides rich, temporal data on glycemic patterns, but its full potential for predicting broader health outcomes remains underutilized. Here, we present GluFormer, a generative foundation model for CGM data that learns nuanced glycemic patterns and translates them into predictive representations of metabolic health. Trained on over 10 million CGM measurements from 10,812 adults, primarily without diabetes, GluFormer uses autoregressive token prediction to capture longitudinal glucose dynamics. We show that GluFormer generalizes to 19 external cohorts (n=6,044) spanning different ethnicities and ages, 5 countries, 8 CGM devices, and diverse pathophysiological states. GluFormers representations exceed the performance of current CGM metrics, such as the Glucose Management Indicator (GMI), for forecasting clinical measures. In a longitudinal study of 580 adults with CGM data and 12-year follow-up, GluFormer identifies individuals at elevated risk of developing diabetes more effectively than blood HbA1C%, capturing 66% of all new-onset diabetes diagnoses in the top quartile versus 7% in the bottom quartile. Similarly, 69% of cardiovascular-death events occurred in the top quartile with none in the bottom quartile, demonstrating powerful risk stratification beyond traditional glycemic metrics. We also show that CGM representations from pre-intervention periods in Randomized Clinical Trials outperform other methods in predicting primary and secondary outcomes. When integrating dietary data into GluFormer, we show that the multi-modal version of the model can accurately generate CGM data based on dietary intake data, simulate outcomes of dietary interventions, and predict individual responses to specific foods.
翻译:暂无翻译