This paper features convolutional neural networks defined on hypercomplex algebras applied to classify lymphocytes in blood smear digital microscopic images. Such classification is helpful for the diagnosis of acute lymphoblast leukemia (ALL), a type of blood cancer. We perform the classification task using eight hypercomplex-valued convolutional neural networks (HvCNNs) along with real-valued convolutional networks. Our results show that HvCNNs perform better than the real-valued model, showcasing higher accuracy with a much smaller number of parameters. Moreover, we found that HvCNNs based on Clifford algebras processing HSV-encoded images attained the highest observed accuracies. Precisely, our HvCNN yielded an average accuracy rate of 96.6% using the ALL-IDB2 dataset with a 50% train-test split, a value extremely close to the state-of-the-art models but using a much simpler architecture with significantly fewer parameters.
翻译:本文介绍了用于对血涂层数字显微镜中的淋巴细胞进行分类的超复合代数测算器上定义的共生神经网络。 这种分类有助于诊断急性淋巴白血病(ALL),一种血癌。 我们使用8个超复合价值高的共生神经网络以及实际价值高的共生网络来进行分类。 我们的结果表明, HvCNNs的表现优于实际价值高的模型,显示精确度高得多,参数少得多。 此外,我们发现,基于克里福德代谢布拉斯处理HSV-encordcord图像的 HvCNNs 达到了观测到的最高弧度。 确切地说,我们的HvCNN 得出了96.6%的平均精确率,使用的是拥有50%火车测试分解的 ALL-IDB2数据集,这一数值非常接近于最新模型,但使用参数少得多的简单结构。