Robust optimization has been established as a leading methodology to approach decision problems under uncertainty. To derive a robust optimization model, a central ingredient is to identify a suitable model for uncertainty, which is called the uncertainty set, containing all scenarios against which we wish to protect. An ongoing challenge in the recent literature is to derive uncertainty sets from given historical data. In this paper we use an unsupervised deep learning method to construct non-convex uncertainty sets from data, which have a more complex structure than the typically considered sets. We show that the trained neural networks can be integrated into a robust optimization model by formulating the adversarial problem as a convex quadratic mixed-integer program. This allows us to derive robust solutions through an iterative scenario generation process. In extensive computational experiments, we compare this approach to a current state-of-the-art approach, which derives uncertainty sets by kernel-based support vector clustering. We find that uncertainty sets derived by the unsupervised deep learning method can give a better description of data, leading to robust solutions that considerably outperform the comparison method both with respect to objective value and feasibility.
翻译:强力优化已被确立为在不确定情况下处理决策问题的主要方法。 要形成一个强有力的优化模型, 核心要素是确定一种适当的不确定性模型, 称为不确定性集, 其中包括我们想要保护的所有情景。 最近文献中的一项持续挑战是从给定的历史数据中获取不确定性组。 在本文件中, 我们使用一种未经监督的深层次学习方法, 从数据中构建非凝固型不确定性组, 这些数据组的结构比通常考虑的数据集复杂得多。 我们表明, 受过训练的神经网络可以通过将对抗性问题发展成一个正统优化型模型, 将之作为共振四面形混整程序。 这使我们能够通过一个迭代情景生成过程获得强有力的解决方案。 在广泛的计算实验中, 我们把这个方法与当前的最新方法进行比较, 后者通过内核支持矢量组合产生不确定性组。 我们发现, 未经监督的深层学习方法产生的不确定性组可以更清楚地描述数据, 从而形成强有力的解决方案, 大大超出客观价值和可行性方面的比较方法。