In recent years, Generative Adversarial Networks (GAN) have emerged as a powerful method for learning the mapping from noisy latent spaces to realistic data samples in high-dimensional space. So far, the development and application of GANs have been predominantly focused on spatial data such as images. In this project, we aim at modeling of spatio-temporal sensor data instead, i.e. dynamic data over time. The main goal is to encode temporal data into a global and low-dimensional latent vector that captures the dynamics of the spatio-temporal signal. To this end, we incorporate auto-regressive RNNs, Wasserstein GAN loss, spectral norm weight constraints and a semi-supervised learning scheme into InfoGAN, a method for retrieval of meaningful latents in adversarial learning. To demonstrate the modeling capability of our method, we encode full-body skeletal human motion from a large dataset representing 60 classes of daily activities, recorded in a multi-Kinect setup. Initial results indicate competitive classification performance of the learned latent representations, compared to direct CNN/RNN inference. In future work, we plan to apply this method on a related problem in the medical domain, i.e. on recovery of meaningful latents in gait analysis of patients with vertigo and balance disorders.


翻译:近年来,General Adversarial Networks(GAN)已成为从噪音潜伏空间到高维空间现实数据抽样的强大学习方法,迄今为止,GAN的开发和应用主要侧重于图像等空间数据。在这个项目中,我们的目标是模拟时空空间传感器数据,即动态数据。主要目标是将时间数据编码成一个全球和低维潜载体,以捕捉时空信号的动态。为此,我们把自动递增式RNNS、Wasserstein GAN损失、光谱规范重量限制和半监督的学习计划纳入InfoGAN,这是在对抗性学习中检索有意义的潜在潜力的一种方法。为了展示我们方法的建模能力,我们从一个代表60类日常活动的大型数据集中将全体骨骼人类运动编码成编码,该数据集记录在多基结构中。初步结果显示,与直接的CNN/RNNU相关医学分析计划的隐性潜值潜值显示有竞争力的性表现。我们应用了这一方法与未来领域病变的ICNCN/RNNU相关的医学平衡。

6
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
160+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
4+阅读 · 2018年4月17日
VIP会员
Top
微信扫码咨询专知VIP会员