In this work, we present an evaluation of smaller BLOOM model variants (350m/560m and 1b3/1b7) on various natural language processing tasks. This includes GLUE - language understanding, prompt-based zero-shot and few-shot text classification and extraction, question answering, prompt-based text generation, and multi-lingual text classification to understand model strengths/weaknesses and behavior. Empirical results show that BLOOM variants under-perform on all GLUE tasks (except WNLI), question-answering, and text generation. The variants bloom for WNLI, with an accuracy of 56.3%, and for prompt-based few-shot text extraction on MIT Movies and ATIS datasets. The BLOOM variants on average have 7% greater accuracy over GPT-2 and GPT-Neo models on Director and Airline Name extraction from MIT Movies and ATIS datasets, respectively.
翻译:在这项工作中,我们介绍了对各种自然语言处理任务的小型BLOOM模型变体(350m/560m和1b3/1/b7)的评价,其中包括GLUE -- -- 语言理解、基于即时零发和几发文本分类和提取、回答问题、基于即时文本生成和多种语文文本分类,以了解模型的强点/弱点和行为。经验性结果显示,BLOOM模型变体在所有GLUE任务(WNLI除外)、问答和文本生成方面表现不佳。WNLI的变体,精确率为56.3%,用于麻省理工学院电影和ATIS数据集的快速几发文本提取。BLOM变体平均比GPT-2和GPT-Neo的主任模型和从麻省电影和ATIS数据集提取的航空名称模型精度高出7%。