Outliers arise in networks due to different reasons such as fraudulent behavior of malicious users or default in measurement instruments and can significantly impair network analyses. In addition, real-life networks are likely to be incompletely observed, with missing links due to individual non-response or machine failures. Identifying outliers in the presence of missing links is therefore a crucial problem in network analysis. In this work, we introduce a new algorithm to detect outliers in a network that simultaneously predicts the missing links. The proposed method is statistically sound: we prove that, under fairly general assumptions, our algorithm exactly detects the outliers, and achieves the best known error for the prediction of missing links with polynomial computation cost. It is also computationally efficient: we prove sub-linear convergence of our algorithm. We provide a simulation study which demonstrates the good behavior of the algorithm in terms of outliers detection and prediction of the missing links. We also illustrate the method with an application in epidemiology, and with the analysis of a political Twitter network. The method is freely available as an R package on the Comprehensive R Archive Network.
翻译:由于恶意用户的欺诈行为或测量工具中的违约等不同原因,网络中出现了外部线,这些现象在网络中出现,这大大削弱了网络分析。此外,实际生活的网络很可能被不完全观察到,由于个别的不反应或机器故障而缺少链接。因此,在缺少链接的情况下发现外部线是网络分析中的一个关键问题。在这项工作中,我们引入一种新的算法,在同时预测缺失链接的网络中检测外部线。提议的方法在统计上是健全的:我们证明,在相当一般的假设下,我们的算法准确地检测了外部线,在预测缺失链接和多线计算成本方面实现了已知的最佳错误。它还具有计算效率:我们证明了我们的算法的亚线性趋同。我们提供了模拟研究,从外部线性和对缺失链接的预测的角度展示了算法的良好行为。我们还介绍了在流行病学中应用的方法,并分析了政治推特网络。该方法在综合档案网络上可以自由使用。