Outliers arise in networks due to different reasons such as fraudulent behavior of malicious users or default in measurement instruments and can significantly impair network analyses. In addition, real-life networks are likely to be incompletely observed, with missing links due to individual non-response or machine failures. Identifying outliers in the presence of missing links is therefore a crucial problem in network analysis. In this work, we introduce a new algorithm to detect outliers in a network that simultaneously predicts the missing links. The proposed method is statistically sound: we prove that, under fairly general assumptions, our algorithm exactly detects the outliers, and achieves the best known error for the prediction of missing links with polynomial computation cost. It is also computationally efficient: we prove sub-linear convergence of our algorithm. We provide a simulation study which demonstrates the good behavior of the algorithm in terms of outliers detection and prediction of the missing links. We also illustrate the method with an application in epidemiology, and with the analysis of a political Twitter network. The method is freely available as an R package on the Comprehensive R Archive Network.


翻译:由于恶意用户的欺诈行为或测量工具中的违约等不同原因,网络中出现了外部线,这些现象在网络中出现,这大大削弱了网络分析。此外,实际生活的网络很可能被不完全观察到,由于个别的不反应或机器故障而缺少链接。因此,在缺少链接的情况下发现外部线是网络分析中的一个关键问题。在这项工作中,我们引入一种新的算法,在同时预测缺失链接的网络中检测外部线。提议的方法在统计上是健全的:我们证明,在相当一般的假设下,我们的算法准确地检测了外部线,在预测缺失链接和多线计算成本方面实现了已知的最佳错误。它还具有计算效率:我们证明了我们的算法的亚线性趋同。我们提供了模拟研究,从外部线性和对缺失链接的预测的角度展示了算法的良好行为。我们还介绍了在流行病学中应用的方法,并分析了政治推特网络。该方法在综合档案网络上可以自由使用。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月16日
Arxiv
0+阅读 · 2021年1月15日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
5+阅读 · 2018年4月17日
Arxiv
4+阅读 · 2018年2月19日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员