One of the most fundamental aspects of any machine learning algorithm is the training data used by the algorithm. We introduce the novel concept of $\epsilon$-approximation of datasets, obtaining datasets which are much smaller than or are significant corruptions of the original training data while maintaining similar model performance. We introduce a meta-learning algorithm called Kernel Inducing Points (KIP) for obtaining such remarkable datasets, inspired by the recent developments in the correspondence between infinitely-wide neural networks and kernel ridge-regression (KRR). For KRR tasks, we demonstrate that KIP can compress datasets by one or two orders of magnitude, significantly improving previous dataset distillation and subset selection methods while obtaining state of the art results for MNIST and CIFAR-10 classification. Furthermore, our KIP-learned datasets are transferable to the training of finite-width neural networks even beyond the lazy-training regime, which leads to state of the art results for neural network dataset distillation with potential applications to privacy-preservation.


翻译:任何机器学习算法的最根本方面之一是算法使用的培训数据。我们引入了新颖的概念,即用$\ epsilon$-access-access of datase,获取的数据集比原始培训数据小得多或严重腐败,同时保持类似的模型性能。我们引入了一个称为Kernel诱导点(KIP)的元学习算法,用于获取这种非凡的数据集,这种算法受到无限宽的神经网络和内核里脊反射(KRR)之间通信最近发展情况的启发。关于KRR的任务,我们证明KIP可以用一个或两个数量级压缩数据集,大大改进以前的数据集蒸馏和子选择方法,同时获取MNIST和CIFAR-10分类的艺术结果状况。此外,我们的KIP所学数据集可转让用于培训有限线神经网络的培训,甚至超越了懒惰培训制度,从而导致记录神经网络数据蒸馏的艺术结果,并有可能应用于隐私保护。

1
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Arxiv
0+阅读 · 2021年5月17日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Top
微信扫码咨询专知VIP会员