For the last two decades, high-dimensional data and methods have proliferated throughout the literature. Yet, the classical technique of linear regression has not lost its usefulness in applications. In fact, many high-dimensional estimation techniques can be seen as variable selection that leads to a smaller set of variables (a ``sub-model'') where classical linear regression applies. We analyze linear regression estimators resulting from model-selection by proving estimation error and linear representation bounds uniformly over sets of submodels. Based on deterministic inequalities, our results provide ``good'' rates when applied to both independent and dependent data. These results are useful in meaningfully interpreting the linear regression estimator obtained after exploring and reducing the variables and also in justifying post model-selection inference. All results are derived under no model assumptions and are non-asymptotic in nature.


翻译:在过去二十年中,高维数据和方法在整个文献中扩散。然而,典型的线性回归技术在应用中并没有失去其效用。事实上,许多高维估算技术可以被视为可变选择,从而导致适用经典线性回归的更小的一组变量(“子模型” ) 。我们通过证明估算错误和线性表达方式在一系列子模型上一致的界限来分析模型选择产生的线性回归估计值。基于确定性不平等,我们的结果提供了“良好”比率,既适用于独立数据,也适用于依赖性数据。这些结果有助于有意义地解释在探索和减少变量之后获得的线性回归估计值,也有助于证明后模式选择的推断值的合理性。所有结果都是在没有模型假设的情况下产生的,在性质上是非随机性的。

0
下载
关闭预览

相关内容

线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。其表达形式为y = w'x+e,e为误差服从均值为0的正态分布。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年7月7日
Arxiv
0+阅读 · 2021年7月6日
Arxiv
0+阅读 · 2021年7月6日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员