We establish a new H2 Korn's inequality and its discrete analog, which greatly simplify the construction of nonconforming elements for a linear strain gradient elastic model. The Specht triangle [41] and the NZT tetrahedron [45] are analyzed as two typical representatives for robust nonconforming elements in the sense that the rate of convergence is independent of the small material parameter. We construct new regularized interpolation estimate and the enriching operator for both elements, and prove the error estimates under minimal smoothness assumption on the solution. Numerical results are consistent with the theoretical prediction.
翻译:我们建立了一个新的H2 Korn的不平等及其离散类比,大大简化线性梯度弹性模型不兼容元素的构造。Specht三角形[41]和NZT四面形[45]被分析为强健不兼容元素的典型代表,因为趋同率独立于小物质参数。我们为这两个元素制定了新的常规内插估计和丰富操作器,并在解决方案的最小顺畅假设下证明误差估计。数字结果符合理论预测。