We introduce a notion called entropic independence for distributions $\mu$ defined on pure simplicial complexes, i.e., subsets of size $k$ of a ground set of elements. Informally, we call a background measure $\mu$ entropically independent if for any (possibly randomly chosen) set $S$, the relative entropy of an element of $S$ drawn uniformly at random carries at most $O(1/k)$ fraction of the relative entropy of $S$, a constant multiple of its ``share of entropy.'' Entropic independence is the natural analog of spectral independence, another recently established notion, if one replaces variance by entropy. In our main result, we show that $\mu$ is entropically independent exactly when a transformed version of the generating polynomial of $\mu$ can be upper bounded by its linear tangent, a property implied by concavity of the said transformation. We further show that this concavity is equivalent to spectral independence under arbitrary external fields, an assumption that also goes by the name of fractional log-concavity. Our result can be seen as a new tool to establish entropy contraction from the much simpler variance contraction inequalities. A key differentiating feature of our result is that we make no assumptions on marginals of $\mu$ or the degrees of the underlying graphical model when $\mu$ is based on one. We leverage our results to derive tight modified log-Sobolev inequalities for multi-step down-up walks on fractionally log-concave distributions. As our main application, we establish the tight mixing time of $O(n\log n)$ for Glauber dynamics on Ising models with interaction matrix of operator norm smaller than $1$, improving upon the prior quadratic dependence on $n$.
翻译:我们引入了一个概念, 叫做“ 分配” 的发行量独立 $\ mu$, 定义在纯简化的复合体上, 即, 大小为 $k$ 的子集 。 非正式地, 如果任何( 可能随机选择) 设置了$S 美元, 我们称之为背景量独立 $ mumotial, 一个在随机携带时统一绘制的美元元素的相对倍数, 最多为 O( 1/ k), 相对的 美元, 这是它“ 增长 ” 的常数 。 “ 磁度独立 ” 是光谱独立的自然模拟, 另一种最近建立的概念, 如果用 entropy 来取代差异 。 在我们的主要结果中, $\ 表示 美元( 随机随机随机随机随机) 的元值独立。 当一个生成的多元值元素的变换版可以被其线性调高时, 一个属性以上述变数为隐含 。 我们进一步显示, 在一个任意的外部域中, 美元 硬度 硬度 度 的硬度 度 度 的 度 的 度 度 的, 的 度 的 值 和 的 等值 等值 等值 等值 等值 等值 等值 等值 等值 。