We introduce a notion called entropic independence for distributions $\mu$ defined on pure simplicial complexes, i.e., subsets of size $k$ of a ground set of elements. Informally, we call a background measure $\mu$ entropically independent if for any (possibly randomly chosen) set $S$, the relative entropy of an element of $S$ drawn uniformly at random carries at most $O(1/k)$ fraction of the relative entropy of $S$, a constant multiple of its ``share of entropy.'' Entropic independence is the natural analog of spectral independence, another recently established notion, if one replaces variance by entropy. In our main result, we show that $\mu$ is entropically independent exactly when a transformed version of the generating polynomial of $\mu$ can be upper bounded by its linear tangent, a property implied by concavity of the said transformation. We further show that this concavity is equivalent to spectral independence under arbitrary external fields, an assumption that also goes by the name of fractional log-concavity. Our result can be seen as a new tool to establish entropy contraction from the much simpler variance contraction inequalities. A key differentiating feature of our result is that we make no assumptions on marginals of $\mu$ or the degrees of the underlying graphical model when $\mu$ is based on one. We leverage our results to derive tight modified log-Sobolev inequalities for multi-step down-up walks on fractionally log-concave distributions. As our main application, we establish the tight mixing time of $O(n\log n)$ for Glauber dynamics on Ising models with interaction matrix of operator norm smaller than $1$, improving upon the prior quadratic dependence on $n$.


翻译:我们引入了一个概念, 叫做“ 分配” 的发行量独立 $\ mu$, 定义在纯简化的复合体上, 即, 大小为 $k$ 的子集 。 非正式地, 如果任何( 可能随机选择) 设置了$S 美元, 我们称之为背景量独立 $ mumotial, 一个在随机携带时统一绘制的美元元素的相对倍数, 最多为 O( 1/ k), 相对的 美元, 这是它“ 增长 ” 的常数 。 “ 磁度独立 ” 是光谱独立的自然模拟, 另一种最近建立的概念, 如果用 entropy 来取代差异 。 在我们的主要结果中, $\ 表示 美元( 随机随机随机随机随机) 的元值独立。 当一个生成的多元值元素的变换版可以被其线性调高时, 一个属性以上述变数为隐含 。 我们进一步显示, 在一个任意的外部域中, 美元 硬度 硬度 度 的硬度 度 度 的 度 的 度 度 的, 的 度 的 值 和 的 等值 等值 等值 等值 等值 等值 等值 等值 等值 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月29日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员