Established approaches to obtain generalization bounds in data-driven optimization and machine learning mostly build on solutions from empirical risk minimization (ERM), which depend crucially on the functional complexity of the hypothesis class. In this paper, we present an alternate route to obtain these bounds on the solution from distributionally robust optimization (DRO), a recent data-driven optimization framework based on worst-case analysis and the notion of ambiguity set to capture statistical uncertainty. In contrast to the hypothesis class complexity in ERM, our DRO bounds depend on the ambiguity set geometry and its compatibility with the true loss function. Notably, when using maximum mean discrepancy as a DRO distance metric, our analysis implies generalization bounds that depend solely on the true loss function. To the best of our knowledge, it is the first generalization bound in the literature that is entirely independent of any other candidates in the hypothesis class. We hope our findings can open the door for a better understanding of DRO, especially its benefits on loss minimization and other machine learning applications.
翻译:在数据驱动优化和机器学习中,既定的获取通用界限的方法主要以经验风险最小化(ERM)的解决方案为基础,这些解决方案主要取决于假设类的功能复杂性。在本文中,我们提出了一个获取这些界限的替代路径,这些解决方案来自分布式强力优化(DRO),这是基于最坏情况分析的最新数据驱动优化(DRO)框架,也是为捕捉统计不确定性而设定的模糊概念。与机构风险管理中的假设类别复杂性不同,我们的DRO界限取决于所设定的模糊性几何及其与真正损失功能的兼容性。值得注意的是,在使用最大平均值差异作为DRO距离度衡量标准时,我们的分析意味着仅依赖于真正损失函数的通用界限。根据我们的最佳知识,这是文献中与假设类中任何其他候选人完全独立的第一种通用约束。我们希望我们的调查结果能够打开更好地了解DRO的大门,特别是其在尽量减少损失和其他机器学习应用方面的好处。