This paper offers a new approach to address the model uncertainty in (potentially) divergent-dimensional single-index models (SIMs). We propose a model-averaging estimator based on cross-validation, which allows the dimension of covariates and the number of candidate models to increase with the sample size. We show that when all candidate models are misspecified, our model-averaging estimator is asymptotically optimal in the sense that its squared loss is asymptotically identical to that of the infeasible best possible averaging estimator. In a different situation where correct models are available in the model set, the proposed weighting scheme assigns all weights to the correct models in the asymptotic sense. We also extend our method to average regularized estimators and propose pre-screening methods to deal with cases with high-dimensional covariates. We illustrate the merits of our method via simulations and two empirical applications.
翻译:本文提出了解决(潜在)不同维度单指数模型中模型不确定性的新方法。 我们提出一个基于交叉校准的模型- 稳定估计值, 允许共变和候选模型数量随样本规模的增加而增加。 我们显示,当所有候选模型被错误地指定时, 我们的模型- 稳定估计值的模型是暂时最佳的, 因为它的平方损失与不可行的最佳平均估计值无异。 在模型集中存在正确模型的不同情况下, 拟议的加权方案将所有权重都分配给了正确的模型, 也就是说, 我们还将我们的方法推广到普通的常规估计值, 并提出处理高维共变数案例的预选方法。 我们通过模拟和两种经验应用来说明我们方法的优点。