The Mat\'ern covariance function is ubiquitous in the application of Gaussian processes to spatial statistics and beyond. Perhaps the most important reason for this is that the smoothness parameter $\nu$ gives complete control over the mean-square differentiability of the process, which has significant implications for the behavior of estimated quantities such as interpolants and forecasts. Unfortunately, derivatives of the Mat\'ern covariance function with respect to $\nu$ require derivatives of the modified second-kind Bessel function $\mathcal{K}_\nu$ with respect to $\nu$. While closed form expressions of these derivatives do exist, they are prohibitively difficult and expensive to compute. For this reason, many software packages require fixing $\nu$ as opposed to estimating it, and all existing software packages that attempt to offer the functionality of estimating $\nu$ use finite difference estimates for $\partial_\nu \mathcal{K}_\nu$. In this work, we introduce a new implementation of $\mathcal{K}_\nu$ that has been designed to provide derivatives via automatic differentiation (AD), and whose resulting derivatives are significantly faster and more accurate than those computed using finite differences. We provide comprehensive testing for both speed and accuracy and show that our AD solution can be used to build accurate Hessian matrices for second-order maximum likelihood estimation in settings where Hessians built with finite difference approximations completely fail.
翻译:Mat\ perconvention 函数在应用 Gausian 进程对空间统计及其他方面应用 Gausian 进程时无处不在。 也许最重要的原因是, 光滑参数 $\ nu$ 完全控制了该过程的平均值差异性, 这对估计数量( 如内插和预测) 的行为有着重大影响。 不幸的是, Mat\' perconvention 函数对$\ nu$ 的衍生物需要修改的二类贝塞尔函数的衍生物 $\ mathcal{K ⁇ nu$ $相对于$\ nu$。 虽然这些衍生物的封闭形式表达方式确实存在, 但却非常难以和昂贵地计算。 为此, 许多软件包需要固定 $\ nu 美元而不是估算该过程的平均值, 而所有现有的软件包试图提供估算$\ nu$ un 美元 的有限差异估计值的功能。 $\\\\\\\ mathcal cal {K ⁇ nu$ $ $@ k ⁇ nu$ $ $ $@ $ n$ $ n$ $ $ $ $ $ lanu$ $ lax lax $ $ $ $ lax $ $. lax pre pre pre pre preme des pre pre pre pre preal deal disal disal disal disal dal disal dismational dal dal dal disal dal dal dreal dreal dreal dal dal dismations, labal dreal de labal dreal, la la la la ladal labal daldal ladal ladal la la la la la la la la lad labal la la la la la la la la la la la la lautd la la la la la la la la la la la la la la la la la la la la la la la