Computing linear minimum mean square error (LMMSE) filters is often ill conditioned, suggesting that unconstrained minimization of the mean square error is an inadequate principle for filter design. To address this, we first develop a unifying framework for studying constrained LMMSE estimation problems. Using this framework, we expose an important structural property of all constrained LMMSE filters and show that they all involve an inherent preconditioning step. This parameterizes all such filters only by their preconditioners. Moreover, each filters is invariant to invertible linear transformations of its preconditioner. We then clarify that merely constraining the rank of the filters, leading to the well-known low-rank Wiener filter, does not suitably address the problem of ill conditioning. Instead, we use a constraint that explicitly requires solutions to be well conditioned in a certain specific sense. We introduce two well-conditioned estimators and evaluate their mean-squared-error performance. We show these two estimators converge to the standard LMMSE filter as their truncated-power ratio converges to zero, but more slowly than the low-rank Wiener filter in terms of scaling law. This exposes the price for being well conditioned. We also show quantitative results with historical VIX data to illustrate the performance of our two well-conditioned estimators.
翻译:电算线性最小平均平方差( LMMSE) 过滤器通常条件差, 这表明不限制地尽量减少平均平方差是过滤器设计的一项不适当的原则。 为了解决这个问题, 我们首先开发一个统一框架, 研究受限制的 LMMSE 估算问题。 使用这个框架, 我们暴露了所有受限制 LMMSE 过滤器的重要结构属性, 并显示它们都包含一个内在的先决条件步骤。 这个参数将所有这类过滤器都仅以其先决条件为条件。 此外, 每个过滤器都难以让其前置器的不可逆线性变换。 我们然后澄清, 仅仅限制过滤器的级别, 导致众所周知的低级维纳过滤器过滤器, 并不适宜解决受限制的 LMMMSE 估计问题 。 相反, 我们使用一个明确要求解决方案以某种特定意义上的条件进行完善的设置。 我们引入了两个有良好条件的估算器, 并评估它们的平均偏差性能。 我们显示这两个估计器与标准的 LMMMSE 过滤器相趋近, 因为它们的电压率率率比低的VIX 检验器 。