Consider an information diffusion process on a graph $G$ that starts with $k>0$ burnt vertices, and at each subsequent step, burns the neighbors of the currently burnt vertices, as well as $k$ other unburnt vertices. The \emph{$k$-burning number} of $G$ is the minimum number of steps $b_k(G)$ such that all the vertices can be burned within $b_k(G)$ steps. Note that the last step may have smaller than $k$ unburnt vertices available, where all of them are burned. The $1$-burning number coincides with the well-known burning number problem, which was proposed to model the spread of social contagion. The generalization to $k$-burning number allows us to examine different worst-case contagion scenarios by varying the spread factor $k$. In this paper we prove that computing $k$-burning number is APX-hard, for any fixed constant $k$. We then give an $O((n+m)\log n)$-time 3-approximation algorithm for computing $k$-burning number, for any $k\ge 1$, where $n$ and $m$ are the number of vertices and edges, respectively. Finally, we show that even if the burning sources are given as an input, computing a burning sequence itself is an NP-hard problem.


翻译:以 $@ k( G) 开始的 $G 图形上的信息传播程序, 以 $> 0 美元燃烧的顶点开始, 并在以后每一步烧焦当前烧焦的顶点的邻居, 以及其它未烧焦的顶点 $k$ 。 $G 是一个最小的步骤数 $b_ k( G) 美元, 这样所有的顶点都可以在 $b_ k( G) 美元范围内燃烧。 请注意, 最后一步可能小于 $$unburnt 的顶点, 并且所有顶点都被烧焦的顶点都烧焦了。 $$$ burning 数字与众所周知的燃烧数问题相吻合, 用来模拟社会传染的蔓延。 通称 $k $- burning 数字让我们检查最坏的传染情况, 不同的是 $k 。 在这张纸上, 任何固定的固定不变的 美元 美元 。 然后我们给一个甚至O $ $ (n+m)\ log)\ log 美元 。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
知识图谱本体结构构建论文合集
专知会员服务
107+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Deep Neural Network Approximation Theory
Arxiv
0+阅读 · 2021年3月12日
Arxiv
0+阅读 · 2021年3月11日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
知识图谱本体结构构建论文合集
专知会员服务
107+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员