Given a graph where every vertex has exactly one labeled token, how can we most quickly execute a given permutation on the tokens? In (sequential) token swapping, the goal is to use the shortest possible sequence of swaps, each of which exchanges the tokens at the two endpoints of an edge of the graph. In parallel token swapping, the goal is to use the fewest rounds, each of which consists of one or more swaps on the edges of a matching. We prove that both of these problems remain NP-hard when the graph is restricted to be a tree. These token swapping problems have been studied by disparate groups of researchers in discrete mathematics, theoretical computer science, robot motion planning, game theory, and engineering. Previous work establishes NP-completeness on general graphs (for both problems); polynomial-time algorithms for simple graph classes such as cliques, stars, paths, and cycles; and constant-factor approximation algorithms in some cases. The two natural cases of sequential and parallel token swapping in trees were first studied over thirty years ago (as "sorting with a transposition tree") and over twenty-five years ago (as "routing permutations via matchings"), yet their complexities were previously unknown. We also show limitations on approximation of sequential token swapping on trees: we identify a broad class of algorithms that encompass all three known polynomial-time algorithms that achieve the best known approximation factor (which is $2$) and show that no such algorithm can achieve an approximation factor less than $2$.


翻译:在图形中,每个顶点都有一个贴标签的牌子, 我们如何能最迅速地在牌子上执行给定的变换? 在( 顺序 ) 代币互换中, 目标是使用最短的交换顺序, 每个交换在图形边缘两个端点的代币。 在代币互换中, 目标是使用最小的回合, 每个由匹配边缘的一个或多个互换组成。 我们证明, 当图形被限制为一棵树时, 这两种问题都仍然很难被NP- 。 这些代币互换问题已经由离散数学、 理论计算机科学、 机器人运动规划、 游戏理论和工程等不同研究组的研究人员来研究。 以往的工作在一般图表( 两个问题) 中都确定了NP- 的全局性。 代币互换周期的目标是使用最简单的图形类( 比如, 星、 星、 路径和周期 ) 和 常态的近效算算法。 连续和平行的树类互换的两种自然案例在三十年前就进行了首次研究( 如“ 平时, 我们所知道的递定的 ” 25年前,,, 直值也显示了 直系的 直系的 直系 直系 直系 直系 直系 直系 直系( 直系 直系 ) ) 直系 直系 直系 直系 直系 直系 直系 直系, 直系 直系 直系 直系 直系 直系 直系 直系, 直系 直系 直系, 直系 直系 直系 直系 直系 直系 直系 直系 直系 。

0
下载
关闭预览

相关内容

专知会员服务
84+阅读 · 2020年12月5日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
TensorFlow 2.0 Datasets 数据集载入
TensorFlow
6+阅读 · 2020年1月31日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
4+阅读 · 2019年12月2日
Knowledge Distillation from Internal Representations
Arxiv
4+阅读 · 2019年10月8日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
TensorFlow 2.0 Datasets 数据集载入
TensorFlow
6+阅读 · 2020年1月31日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员