Let $\mathbb{K}[x_1, \dots, x_n]$ be a multivariate polynomial ring over a field $\mathbb{K}$. Let $(u_1, \dots, u_n)$ be a sequence of $n$ algebraically independent elements in $\mathbb{K}[x_1, \dots, x_n]$. Given a polynomial $f$ in $\mathbb{K}[u_1, \dots, u_n]$, a subring of $\mathbb{K}[x_1, \dots, x_n]$ generated by the $u_i$'s, we are interested infinding the unique polynomial $f_{\rm new}$ in $\mathbb{K}[e_1,\dots, e_n]$, where $e_1, \dots, e_n$ are new variables, such that $f_{\mathrm{new}}(u_1, \dots, u_n) = f(x_1, \dots, x_n)$. We provide an algorithm and analyze its arithmetic complexity to compute $f_{\mathrm{new}}$ knowing $f$ and $(u_1, \dots, u_n)$.
翻译:Let\ mathbb{ K} [x_ 1,\\ dots, x_n] 美元是一个多变量的多元多边环 $\ mathbb{K} 美元。 $( u_ 1,\ dots, u_ n) 美元是$\ mathbb{ K} [x_ 1,\ dots, x_n] 美元中美元代数独立元素的序列 。 鉴于一个多元值$( $\ mathbb{ K), [u_ 1,\ dots, x_n] 美元是一个多元的多元多边环 。 如果一个多元值, $( $1,\ dots, u_n] 美元, $\dob{ k} [x_ dots, x_ dots] 美元, 我们有兴趣用$\ mathb{ K} [e_ 1,\\\ dots, e_n] 美元, We\ dots, e_n$_ n_ ax_ dead_ ax_ a.