This report presents an elementary theory of unification for positive conjunctive queries. A positive conjunctive query is a formula constructed from propositional constants, equations and atoms using the conjunction $\wedge$ and the existential quantifier $\exists$. In particular, empty queries correspond to existentially quantified systems of equations -- called $\cal E$-formulas. We provide an algorithm which transforms any conjunctive query into a solved form. We prove some lattice-theoretic properties of queries. In particular, the quotient set of $\cal E$-formulas under an equivalence relation forms a complete lattice. Then we present another lattice -- a lattice of finite substitutions. We prove that the both lattices are isomorphic. Finally, we introduce the notion of application of substitutions to formulas and clarify its relationship to $\cal E$-formulas. This theory can be regarded as a basis for alternative presentation of logic programming.
翻译:本报告为正对齐质查询提供了一个基本的统一理论。 积极的对齐查询是一个公式, 其公式是由正对立常数、 方程式和原子构建的, 其使用是组合 $\wege$ 和存在量度 $\ exploitation $\ exploitations $\ exploitations $\ exploitations $\ sublications $\ sublications 。 特别是, 平等关系下的 $\ cal E$- formulas 的商数组构成一个完整的拉蒂ce 。 然后我们再提出另一个拉蒂ce -- 一种有限的替代的拉蒂斯。 我们证明这两个拉蒂克是非形态化的。 最后, 我们引入了替代公式的概念, 并澄清其与 $\ cal E$- formoulas 的关系。 这个理论可以被视为逻辑规划的替代表述基础 。