Estimating the expectations of functionals applied to sums of random variables (RVs) is a well-known problem encountered in many challenging applications. Generally, closed-form expressions of these quantities are out of reach. A naive Monte Carlo simulation is an alternative approach. However, this method requires numerous samples for rare event problems. Therefore, it is paramount to use variance reduction techniques to develop fast and efficient estimation methods. In this work, we use importance sampling (IS), known for its efficiency in requiring fewer computations to achieve the same accuracy requirements. We propose a state-dependent IS scheme based on a stochastic optimal control formulation, where the control is dependent on state and time. We aim to calculate rare event quantities that could be written as an expectation of a functional of the sums of independent RVs. The proposed algorithm is generic and can be applied without restrictions on the univariate distributions of RVs or the functional applied to the sum. We apply this approach to the log-normal distribution to compute the left tail and cumulative distribution of the ratio of independent RVs. For each case, we numerically demonstrate that the proposed state-dependent IS algorithm compares favorably to most well-known estimators dealing with similar problems.
翻译:对随机变量(RVs)的总和应用功能的预期值进行估计是许多具有挑战性的应用中一个众所周知的问题。一般而言,这些数量的封闭式表达方式是无法达到的。一个天真的蒙特卡洛模拟是一种替代方法。然而,这一方法要求对罕见事件问题进行大量抽样。因此,使用差异减少技术来制定快速高效的估算方法至关重要。在这项工作中,我们使用以其效率而知道的、以其效率而需要较少的计算来达到相同的精确度要求的抽样(IS),我们根据一种随机最佳控制配方提出一个依靠国家的IS计划,而这种配方取决于状态和时间。我们的目标是计算可以写成的罕见事件数量,作为独立RVs数量功能的预期值。提议的算法是通用的,可以不限制RVs的单向分布或对总和应用的功能。我们用这个方法来对逻辑正常的分布进行计算,以比较独立的RVs的左尾部和累积分布率。我们用数字方式表明,每一个案例都表明,拟议的依赖国家的ISAsqualental fradial fracialf-fyal far falable falable falsermas。