We study the performance of monolingual and multilingual language models on the task of question-answering (QA) on three diverse languages: English, Finnish and Japanese. We develop models for the tasks of (1) determining if a question is answerable given the context and (2) identifying the answer texts within the context using IOB tagging. Furthermore, we attempt to evaluate the effectiveness of a pre-trained multilingual encoder (Multilingual BERT) on cross-language zero-shot learning for both the answerability and IOB sequence classifiers.
翻译:我们研究三种不同语言:英语、芬兰语和日语的单一语言和多语种语言解答(QA)任务,研究单一语言和多语种语言模式的绩效,我们为以下任务制定模式:(1)根据背景情况确定一个问题是否可以回答,(2)在使用IOB标记的情况下确定答案文本;此外,我们试图评估一个经过预先培训的多语种编码器(多语种BERT)对可回答性和IOB序列分类人员进行跨语言零效果学习的效果。