We propose $\kappa$-approximate nearest neighbor (ANN) data structures for $n$ polygonal curves under the Fr\'{e}chet distance in $\mathbb{R}^d$, where $\kappa \in \{1+\varepsilon,3+\varepsilon\}$ and $d \geq 2$. We assume that every input curve has at most $m$ vertices, every query curve has at most $k$ vertices, $k \ll m$, and $k$ is given for preprocessing. The query times are $\tilde{O}(k(mn)^{0.5+\varepsilon}/\varepsilon^d+ k(d/\varepsilon)^{O(dk)})$ for $(1+\varepsilon)$-ANN and $\tilde{O}(k(mn)^{0.5+\varepsilon}/\varepsilon^d)$ for $(3+\varepsilon)$-ANN. The space and expected preprocessing time are $\tilde{O}(k(mnd^d/\varepsilon^d)^{O(k+1/\varepsilon^2)})$ in both cases. In two and three dimensions, we improve the query times to $O(1/\varepsilon)^{O(k)} \cdot \tilde{O}(k)$ for $(1+\varepsilon)$-ANN and $\tilde{O}(k)$ for $(3+\varepsilon)$-ANN. The space and expected preprocessing time improve to $O(mn/\varepsilon)^{O(k)} \cdot \tilde{O}(k)$ in both cases. For ease of presentation, we treat factors in our bounds that depend purely on $d$ as~$O(1)$. The hidden polylog factors in the big-$\tilde{O}$ notation have powers dependent on $d$.


翻译:我们提出了$\kappa$-近似最近邻(ANN)数据结构,用于 $\mathbb{R}^d$ 下弗雷歇距离下的 $n$ 个多边形曲线,其中 $\kappa \in \{1+\varepsilon,3+\varepsilon\}$ 且 $d \geq 2$。我们假设每个输入曲线最多有 $m$ 个顶点,每个查询曲线最多有 $k$ 个顶点,$k \ll m$,且 $k$ 为预处理。对于 $(1+\varepsilon)$-ANN 和 $(3+\varepsilon)$-ANN,查询时间为 $\tilde{O}(k(mn)^{0.5+\varepsilon}/\varepsilon^d+ k(d/\varepsilon)^{O(dk)})$ 和 $\tilde{O}(k(mn)^{0.5+\varepsilon}/\varepsilon^d)$。两种情况下的空间和期望预处理时间均为 $\tilde{O}(k(mnd^d/\varepsilon^d)^{O(k+1/\varepsilon^2)})$。在二维和三维空间中,我们将查询时间改进为 $(1+\varepsilon)$-ANN 的 $O(1/\varepsilon)^{O(k)} \cdot \tilde{O}(k)$ 和 $(3+\varepsilon)$-ANN 的 $\tilde{O}(k)$。在两种情况下,空间和期望预处理时间均改进为 $O(mn/\varepsilon)^{O(k)} \cdot \tilde{O}(k)$。为了便于演示,我们将在界限中处理仅取决于 $d$ 的因素为 $O(1)$。大 $\tilde{O}$ 表示法中的隐藏多项式对数因子具有依赖于 $d$ 的幂。

0
下载
关闭预览

相关内容

【AAAI2023】图序注意力网络
专知会员服务
45+阅读 · 2022年11月24日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
85+阅读 · 2021年12月9日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
123+阅读 · 2020年9月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年6月15日
Arxiv
0+阅读 · 2023年6月14日
Arxiv
0+阅读 · 2023年6月13日
Arxiv
0+阅读 · 2023年6月13日
VIP会员
相关VIP内容
【AAAI2023】图序注意力网络
专知会员服务
45+阅读 · 2022年11月24日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
85+阅读 · 2021年12月9日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
123+阅读 · 2020年9月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员