Algebraic data structures are the main subroutine for maintaining distances in fully dynamic graphs in subquadratic time. However, these dynamic algebraic algorithms generally cannot maintain the shortest paths, especially against adaptive adversaries. We present the first fully dynamic algorithm that maintains the shortest paths against an adaptive adversary in subquadratic update time. This is obtained via a combinatorial reduction that allows reconstructing the shortest paths with only a few distance estimates. Using this reduction, we obtain the following: On weighted directed graphs with real edge weights in $[1,W]$, we can maintain $(1+\epsilon)$ approximate shortest paths in $\tilde{O}(n^{1.816}\epsilon^{-2} \log W)$ update and $\tilde{O}(n^{1.741} \epsilon^{-2} \log W)$ query time. This improves upon the approximate distance data structures from [v.d.Brand, Nanongkai, FOCS'19], which only returned a distance estimate, by matching their complexity and returning an approximate shortest path. On unweighted directed graphs, we can maintain exact shortest paths in $\tilde{O}(n^{1.823})$ update and $\tilde{O}(n^{1.747})$ query time. This improves upon [Bergamaschi, Henzinger, P.Gutenberg, V.Williams, Wein, SODA'21] who could report the path only against oblivious adversaries. We improve both their update and query time while also handling adaptive adversaries. On unweighted undirected graphs, our reduction holds not just against adaptive adversaries but is also deterministic. We maintain a $(1+\epsilon)$-approximate $st$-shortest path in $O(n^{1.529} / \epsilon^2)$ time per update, and $(1+\epsilon)$-approximate single source shortest paths in $O(n^{1.764} / \epsilon^2)$ time per update. Previous deterministic results by [v.d.Brand, Nazari, Forster, FOCS'22] could only maintain distance estimates but no paths.


翻译:代数数据结构是维护全动态图的子二次时间距离主要子程序。然而,这些动态代数算法通常不能维护最短路径,特别是面对自适应对手时。我们提出了第一个可以在次二次更新时间内面对自适应对手维护最短路径的全动态算法。这是通过一种组合化的降低方法获得的,可以仅通过几个距离估计重建最短路径。利用此降低方法,我们得到以下结果:在有实数边权$[1,W]$的加重有向图中,我们可以在$\tilde{O}(n^{1.816}\epsilon^{-2} \log W)$的更新时间和$\tilde{O}(n^{1.741} \epsilon^{-2} \log W)$的查询时间内维护$(1+\epsilon)$-近似最短路径。这优于[v.d.Brand,Nanongkai, FOCS'19]的近似距离数据结构,后者仅返回距离估计值,通过匹配其复杂度并返回近似最短路径。在无权有向图中,我们可以在$\tilde{O}(n^{1.823})$的更新时间和$\tilde{O}(n^{1.747})$的查询时间内维护精确最短路径。这优于[Bergamaschi,Henzinger,P.Gutenberg,V.Williams,Wein,SODA'21],他们只能针对无意识的对手报告路径。我们提高了他们的更新和查询时间,同时也处理自适应对手。在无权无向图中,我们的降低通不仅适用于自适应对手,还是确定性的。我们在每个更新中维护$(1+\epsilon)$-近似的$st$-最短路径,需要$O(n^{1.529}/\epsilon^2)$的时间,并在每个更新中维护$(1+\epsilon)$-近似的单源最短路径,需要$O(n^{1.764}/\epsilon^2)$的时间。[v.d.Brand,Nazari,Forster,FOCS'22]的以前确定性结果只能维护距离估计,而没有路径。

0
下载
关闭预览

相关内容

VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
CVPR2020接收论文开源代码
专知
30+阅读 · 2020年2月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
0+阅读 · 2023年5月31日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员