Given a finite set $A\subset\mathbb{R}^d$, let Cov$_{r,k}$ denote the set of all points within distance $r$ to at least $k$ points of $A$. Allowing $r$ and $k$ to vary, we obtain a 2-parameter family of spaces that grow larger when $r$ increases or $k$ decreases, called the \emph{multicover bifiltration}. Motivated by the problem of computing the homology of this bifiltration, we introduce two closely related combinatorial bifiltrations, one polyhedral and the other simplicial, which are both topologically equivalent to the multicover bifiltration and far smaller than a \v Cech-based model considered in prior work of Sheehy. Our polyhedral construction is a bifiltration of the rhomboid tiling of Edelsbrunner and Osang, and can be efficiently computed using a variant of an algorithm given by these authors. Using an implementation for dimension 2 and 3, we provide experimental results. Our simplicial construction is useful for understanding the polyhedral construction and proving its correctness.
翻译:根据一个限定的 $A\ subset\ mathb{R ⁇ d$,让Cov$@r,k}$ 表示在距离内所有点的一组点数,至少是美元美元。允许美元和美元变化,我们得到一个2个参数的空域,当美元增加或美元减少时,这些空间会增加更大,称为 emph{ 多重覆盖双过滤} 。受计算这种浸泡的同质问题的影响,我们引入了两个密切相关的组合式双过滤器,一个是多角度的,另一个是简易的,两者在表面上都相当于多角度的浸泡,远远小于在希希的先前工作中考虑的 & v Cech 模型。我们的聚合体建筑是Edelsbrunner 和 Osang 的Rhombobonbloging 的双立体结构,并且可以使用这些作者给出的算法变量进行高效的计算。我们用执行的维度 2 和 3 维度和 3 的多元理解来提供有用的实验性构建结果。