We prove a non-asymptotic concentration inequality for the spectral norm of sparse inhomogeneous random tensors with Bernoulli entries. For an order-$k$ inhomogeneous random tensor $T$ with sparsity $p_{\max}\geq \frac{c\log n}{n }$, we show that $\|T-\mathbb E T\|=O(\sqrt{n p_{\max}}\log^{k-2}(n))$ with high probability. The optimality of this bound up to polylog factors is provided by an information theoretic lower bound. By tensor unfolding, we extend the range of sparsity to $p_{\max}\geq \frac{c\log n}{n^{m}}$ with $1\leq m\leq k-1$ and obtain concentration inequalities for different sparsity regimes. We also provide a simple way to regularize $T$ such that $O(\sqrt{n^{m}p_{\max}})$ concentration still holds down to sparsity $p_{\max}\geq \frac{c}{n^{m}}$ with $k/2\leq m\leq k-1$. We present our concentration and regularization results with two applications: (i) a randomized construction of hypergraphs of bounded degrees with good expander mixing properties, (ii) concentration of sparsified tensors under uniform sampling.


翻译:我们证明,对于Bernoulli 条目的稀少无色随机发热器的光谱规范来说,我们是一种非非非不显性浓度的不平等。对于一个以纯度为单位的无色随机发热器,只要以纯度为单位,我们证明$T-\max ⁇ QQQQQQqq\\\frac{c\c\c\logn\grogn}美元为单位,我们证明$T-\mathbrbE T ⁇ O(\ sqrt{n\maxlogQQk-2}(n) 可能性很大。这种与多元系数因素结合的最佳性是由一个信息理论性较低约束提供的。对于一个信息,我们用纯度为单位的无色度范围扩大到$maxqQQQQQQQQQQQ\\ mqrqr=crum$rqrum roupulationalationalationality $ration=qleqleqrqr=MQQQQQQQQQrqr=m=maxr=max roupal resental resental resental restime restiax rodudududududududududududul=x=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx=======================================m=========m=m=m=m=mqcal========m======m====mcalcrocal

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】计算机科学离散数学,627页pdf
专知会员服务
131+阅读 · 2020年8月31日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT线性代数(Linear Algebra)中文笔记
专知
51+阅读 · 2019年11月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【原理】GAN的数学原理
GAN生成式对抗网络
8+阅读 · 2017年8月30日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年6月29日
Arxiv
0+阅读 · 2021年6月24日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】计算机科学离散数学,627页pdf
专知会员服务
131+阅读 · 2020年8月31日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
MIT线性代数(Linear Algebra)中文笔记
专知
51+阅读 · 2019年11月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【原理】GAN的数学原理
GAN生成式对抗网络
8+阅读 · 2017年8月30日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员