Tropical cyclones present a serious threat to many coastal communities around the world. Many numerical weather prediction models provide deterministic forecasts with limited measures of their forecast uncertainty. Standard postprocessing techniques may struggle with extreme events or use a 30-day training window that will not adequately characterize the uncertainty of a tropical cyclone forecast. We propose a novel approach that leverages information from past storm events, using a hierarchical model to quantify uncertainty in the spatial correlation parameters of the forecast errors (modeled as Gaussian processes) for a numerical weather prediction model. This approach addresses a massive data problem by implementing a drastic dimension reduction through the assumption that the MLE and Hessian matrix represent all useful information from each tropical cyclone. From this, simulated forecast errors provide uncertainty quantification for future tropical cyclone forecasts. We apply this method to the North American Mesoscale model forecasts and use observations based on the Stage IV data product for 47 tropical cyclones between 2004 and 2017. For an incoming storm, our hierarchical framework combines the forecast from the North American Mesoscale model with the information from previous storms to create 95\% and 99\% prediction maps of rain. For six test storms from 2018 and 2019, these maps provide appropriate probabilistic coverage of observations. We show evidence from the log scoring rule that the proposed hierarchical framework performs best among competing methods.
翻译:许多数字天气预测模型为预测预测的不确定性提供了决定性的预测。标准后处理技术可能与极端事件挣扎,或者使用一个30天的培训窗口,无法充分说明热带气旋预测的不确定性。我们提出一种新的方法,利用过去风暴事件的信息,利用一个等级模型,用预测错误(以高萨进程为模型)的空间相关参数的不确定性量化数值天气预测模型。这个方法通过假设MLE和赫森矩阵代表每个热带气旋的所有有用信息而大幅度降低尺寸来解决一个巨大的数据问题。从这个假设中,模拟预测错误为今后的热带气旋预测提供了不确定性的量化。我们将这种方法应用于北美的中尺度模型预测,并根据2004年至2017年期间47个热带气旋的第四阶段数据产品进行观测。对于即将到来的风暴,我们的等级框架将北美气象模型的预测与以往风暴的信息结合起来,以创建95°和99°的雨量预测地图。对于2018年和2019年的六次测试风暴来说,这些模拟预测错误为今后的热带气旋预测提供了不确定性的定量模型,这些模型根据2004至201717年的第四阶段的数据产品数据产品数据产品,展示了最佳的测量方法。