Tropical cyclones present a serious threat to many coastal communities around the world. Many numerical weather prediction models provide deterministic forecasts with limited measures of their forecast uncertainty. Standard postprocessing techniques may struggle with extreme events or use a 30-day training window that will not adequately characterize the uncertainty of a tropical cyclone forecast. We propose a novel approach that leverages information from past storm events, using a hierarchical model to quantify uncertainty in the spatial correlation parameters of the forecast errors (modeled as Gaussian processes) for a numerical weather prediction model. This approach addresses a massive data problem by implementing a drastic dimension reduction through the assumption that the MLE and Hessian matrix represent all useful information from each tropical cyclone. From this, simulated forecast errors provide uncertainty quantification for future tropical cyclone forecasts. We apply this method to the North American Mesoscale model forecasts and use observations based on the Stage IV data product for 47 tropical cyclones between 2004 and 2017. For an incoming storm, our hierarchical framework combines the forecast from the North American Mesoscale model with the information from previous storms to create 95\% and 99\% prediction maps of rain. For six test storms from 2018 and 2019, these maps provide appropriate probabilistic coverage of observations. We show evidence from the log scoring rule that the proposed hierarchical framework performs best among competing methods.


翻译:许多数字天气预测模型为预测预测的不确定性提供了决定性的预测。标准后处理技术可能与极端事件挣扎,或者使用一个30天的培训窗口,无法充分说明热带气旋预测的不确定性。我们提出一种新的方法,利用过去风暴事件的信息,利用一个等级模型,用预测错误(以高萨进程为模型)的空间相关参数的不确定性量化数值天气预测模型。这个方法通过假设MLE和赫森矩阵代表每个热带气旋的所有有用信息而大幅度降低尺寸来解决一个巨大的数据问题。从这个假设中,模拟预测错误为今后的热带气旋预测提供了不确定性的量化。我们将这种方法应用于北美的中尺度模型预测,并根据2004年至2017年期间47个热带气旋的第四阶段数据产品进行观测。对于即将到来的风暴,我们的等级框架将北美气象模型的预测与以往风暴的信息结合起来,以创建95°和99°的雨量预测地图。对于2018年和2019年的六次测试风暴来说,这些模拟预测错误为今后的热带气旋预测提供了不确定性的定量模型,这些模型根据2004至201717年的第四阶段的数据产品数据产品数据产品,展示了最佳的测量方法。

0
下载
关闭预览

相关内容

分布式容错实时计算系统
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
78+阅读 · 2022年4月3日
专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年12月19日
Arxiv
57+阅读 · 2022年1月5日
Arxiv
30+阅读 · 2021年7月7日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
78+阅读 · 2022年4月3日
专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员