Multivariate time series forecasting constitutes important functionality in cyber-physical systems, whose prediction accuracy can be improved significantly by capturing temporal and multivariate correlations among multiple time series. State-of-the-art deep learning methods fail to construct models for full time series because model complexity grows exponentially with time series length. Rather, these methods construct local temporal and multivariate correlations within subsequences, but fail to capture correlations among subsequences, which significantly affect their forecasting accuracy. To capture the temporal and multivariate correlations among subsequences, we design a pattern discovery model, that constructs correlations via diverse pattern functions. While the traditional pattern discovery method uses shared and fixed pattern functions that ignore the diversity across time series. We propose a novel pattern discovery method that can automatically capture diverse and complex time series patterns. We also propose a learnable correlation matrix, that enables the model to capture distinct correlations among multiple time series. Extensive experiments show that our model achieves state-of-the-art prediction accuracy.
翻译:多变量时间序列预测是网络物理系统中的重要功能,其预测准确性可以通过捕捉多个时间序列之间的时间和多变量相关性而大大提高。 最先进的深层次学习方法无法为全时序列构建模型, 因为模型复杂性随着时间序列的长度会随着时间序列的长度而成倍增长。 相反, 这些方法在子序列中构建本地的时间和多变量相关关系, 但是无法捕捉子序列之间的相互关系, 从而大大影响其预测准确性。 为了捕捉子序列之间的时间和多变量相关关系, 我们设计了一个模式发现模型, 通过不同模式函数构建相关关系。 虽然传统模式发现方法使用共享和固定模式功能, 忽略时间序列的多样性。 我们提出了一种新的模式发现方法, 可以自动捕捉不同和复杂的时间序列模式模式模式。 我们还提议了一个可学习的关联矩阵, 使模型能够捕捉多个时间序列之间的不同关联性。 广泛的实验显示, 我们的模式能够实现状态预测准确性。