Software vulnerabilities (SVs) have become a common, serious, and crucial concern to safety-critical security systems. That leads to significant progress in the use of AI-based methods for software vulnerability detection (SVD). In practice, although AI-based methods have been achieving promising performances in SVD and other domain applications (e.g., computer vision), they are well-known to fail in detecting the ground-truth label of input data (referred to as out-of-distribution, OOD, data) lying far away from the training data distribution (i.e., in-distribution, ID). This drawback leads to serious issues where the models fail to indicate when they are likely mistaken. To address this problem, OOD detectors (i.e., determining whether an input is ID or OOD) have been applied before feeding the input data to the downstream AI-based modules. While OOD detection has been widely designed for computer vision and medical diagnosis applications, automated AI-based techniques for OOD source code data detection have not yet been well-studied and explored. To this end, in this paper, we propose an innovative deep learning-based approach addressing the OOD source code data identification problem. Our method is derived from an information-theoretic perspective with the use of innovative cluster-contrastive learning to effectively learn and leverage source code characteristics, enhancing data representation learning for solving the problem. The rigorous and comprehensive experiments on real-world source code datasets show the effectiveness and advancement of our approach compared to state-of-the-art baselines by a wide margin. In short, on average, our method achieves a significantly higher performance from around 15.27%, 7.39%, and 4.93% on the FPR, AUROC, and AUPR measures, respectively, in comparison with the baselines.
翻译:暂无翻译