We study Frege proofs for the one-to-one graph Pigeon Hole Principle defined on the $n\times n$ grid where $n$ is odd. We are interested in the case where each formula in the proof is a depth $d$ formula in the basis given by $\land$, $\lor$, and $\neg$. We prove that in this situation the proof needs to be of size exponential in $n^{\Omega (1/d)}$. If we restrict the size of each line in the proof to be of size $M$ then the number of lines needed is exponential in $n/(\log M)^{O(d)}$. The main technical component of the proofs is to design a new family of random restrictions and to prove the appropriate switching lemmas.
翻译:暂无翻译