The aim of continual learning is to learn new tasks continuously (i.e., plasticity) without forgetting previously learned knowledge from old tasks (i.e., stability). In the scenario of online continual learning, wherein data comes strictly in a streaming manner, the plasticity of online continual learning is more vulnerable than offline continual learning because the training signal that can be obtained from a single data point is limited. To overcome the stability-plasticity dilemma in online continual learning, we propose an online continual learning framework named multi-scale feature adaptation network (MuFAN) that utilizes a richer context encoding extracted from different levels of a pre-trained network. Additionally, we introduce a novel structure-wise distillation loss and replace the commonly used batch normalization layer with a newly proposed stability-plasticity normalization module to train MuFAN that simultaneously maintains high plasticity and stability. MuFAN outperforms other state-of-the-art continual learning methods on the SVHN, CIFAR100, miniImageNet, and CORe50 datasets. Extensive experiments and ablation studies validate the significance and scalability of each proposed component: 1) multi-scale feature maps from a pre-trained encoder, 2) the structure-wise distillation loss, and 3) the stability-plasticity normalization module in MuFAN. Code is publicly available at https://github.com/whitesnowdrop/MuFAN.
翻译:持续学习的目的是不断学习新任务(即,塑料),同时不忘以前从旧任务(即,稳定)中学到的知识。 在在线持续学习的情景中,数据严格以流流方式流出,在线持续学习的塑料比离线持续学习更加脆弱,因为从单一数据点获得的培训信号有限,因此在线持续学习的塑料比离线学习更加脆弱。为了克服在线持续学习中的稳定性-塑料两难困境,我们提议建立一个名为多尺度特征适应网络(MuFAN)的在线持续学习框架,利用从受过训练的网络的不同级别中提取的更丰富的背景编码。此外,我们引入了一种新颖的结构智能蒸馏损失,用新提议的稳定-固定性正常化模块取代了通常使用的批次正常化层,以同时保持高塑料性和稳定性和稳定性的 MuFANAN培训模块。MuFANAN比其他在SVHN、CIFAR100、MiniFMIMGNet和CORE50数据集方面采用更先进的持续学习方法。从广泛实验和升级研究中验证了公开结构的重要性和可升级性。