Nowadays, the interpretation of why a machine learning (ML) model makes certain inferences is as crucial as the accuracy of such inferences. Some ML models like the decision tree possess inherent interpretability that can be directly comprehended by humans. Others like artificial neural networks (ANN), however, rely on external methods to uncover the deduction mechanism. SHapley Additive exPlanations (SHAP) is one of such external methods, which requires a background dataset when interpreting ANNs. Generally, a background dataset consists of instances randomly sampled from the training dataset. However, the sampling size and its effect on SHAP remain to be unexplored. In our empirical study on the MIMIC-III dataset, we show that the two core explanations - SHAP values and variable rankings fluctuate when using different background datasets acquired from random sampling, indicating that users cannot unquestioningly trust the one-shot interpretation from SHAP. Luckily, such fluctuation decreases with the increase of the background dataset size. Also, we notice an U-shape in the stability assessment of SHAP variable rankings, demonstrating that SHAP is more reliable in ranking the most and least important variables compared to moderately important ones. Overall, our results suggest that users should take into account how background data affects SHAP results, with improved SHAP stability as the background sample size increases.


翻译:现今,解释为何机器学习(ML)模型做出某些推论的解释方式和推论准确率一样重要。像决策树这样的ML模型具有直接被人理解的内在可解释性。然而,其他的模型,如人工神经网络(ANN)则依赖外部方法来揭示推导机制。SHapley Additive exPlanations(SHAP)就是这样一种需要背景数据集的外部方法来解释ANNs。一般情况下,背景数据集包含从训练数据集中随机抽取的实例。然而,抽样大小及其对SHap的影响仍未被研究。在我们对MIMIC-III数据集的实证研究中,我们展示了两种核心解释--SHAP值和变量排名--在使用从随机抽样获得的不同的背景数据集时会波动,这表明用户不能毫无保留地相信SHAP的一次性解释。幸运的是,此类波动随着背景数据集大小的增加而减少。此外,我们注意到SHAP变量排名稳定性评估中的U形演变,表明与适度重要变量相比,SHAP在排列最重要和最不重要的变量时更可靠。总体上,我们的结果表明,用户应该考虑背景数据如何影响SHAP的结果,随着背景样本大小的增加,SHAP的稳定性得到了改善。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
197+阅读 · 2020年2月24日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
101+阅读 · 2019年10月9日
深度学习高温蒸馏:Softmax With Temperature
PaperWeekly
1+阅读 · 2022年11月23日
论文浅尝 | Continual Learning for Named Entity Recognition
开放知识图谱
1+阅读 · 2022年6月25日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
机器学习可解释性工具箱XAI
专知
11+阅读 · 2019年2月8日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
16+阅读 · 2018年2月7日
VIP会员
相关资讯
深度学习高温蒸馏:Softmax With Temperature
PaperWeekly
1+阅读 · 2022年11月23日
论文浅尝 | Continual Learning for Named Entity Recognition
开放知识图谱
1+阅读 · 2022年6月25日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
机器学习可解释性工具箱XAI
专知
11+阅读 · 2019年2月8日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员