The use of bag of visual words (BOW) model for modelling images based on local invariant features computed at interest point locations has become a standard choice for many computer vision tasks. Visual vocabularies generated from image feature vectors are expected to produce visual words that are discriminative to improve the performance of image annotation systems. Most techniques that adopt the BOW model in annotating images declined favorable information that can be mined from image categories to build discriminative visual vocabularies. To this end, this paper introduces a detailed framework for automatically annotating natural scene images with local semantic labels from a predefined vocabulary. The framework is based on a hypothesis that assumes that, in natural scenes, intermediate semantic concepts are correlated with the local keypoints. Based on this hypothesis, image regions can be efficiently represented by BOW model and using a machine learning approach, such as SVM, to label image regions with semantic annotations. Another objective of this paper is to address the implications of generating visual vocabularies from image halves, instead of producing them from the whole image, on the performance of annotating image regions with semantic labels. All BOW-based approaches as well as baseline methods have been extensively evaluated on 6-categories dataset of natural scenes using the SVM and KNN classifiers. The reported results have shown the plausibility of using the BOW model to represent the semantic information of image regions and thus to automatically annotate image regions with labels.
翻译:使用视觉文字包( BOW) 模型来模拟基于在利益点地点计算的地方异变特征的图像。 使用视觉文字包( BOW) 模型来模拟基于在利益点位置计算的地方异变特征的图像, 已经成为许多计算机视觉任务的标准选择。 图像特征矢量产生的视觉词汇预计将产生具有歧视性的视觉文字, 以提高图像注释系统的性能。 在说明图像中采用 BOW 模型的多数技术会减少从图像类别中提取的有利信息, 以建立歧视性的视觉词汇。 为此, 本文引入了一个详细框架, 用于用本地语义标记自动标示自然景象图像图像图像, 而不是用预定义的词义标签来自动标示自然景象图像。 因此, 图像区域可以有效地由 BOW 模型来代表图像区域, 并且使用所报告的基本语言标定的图像区域 。 本文的另一个目标是处理从图像中生成图像半成的视觉图像, 而不是从整个图像生成这些图像。 使用SOW 标定的图像区域, 使用SMA 标定的图像区域, 使用 标定的自然标定方法, 。