Recent transformer-based super-resolution (SR) methods have achieved promising results against conventional CNN-based methods. However, these approaches suffer from essential shortsightedness created by only utilizing the standard self-attention-based reasoning. In this paper, we introduce an effective hybrid SR network to aggregate enriched features, including local features from CNNs and long-range multi-scale dependencies captured by transformers. Specifically, our network comprises transformer and convolutional branches, which synergetically complement each representation during the restoration procedure. Furthermore, we propose a cross-scale token attention module, allowing the transformer branch to exploit the informative relationships among tokens across different scales efficiently. Our proposed method achieves state-of-the-art SR results on numerous benchmark datasets.
翻译:最近以变压器为基础的超级分辨率(SR)方法与常规CNN为基础的方法相比已经取得了大有希望的成果,然而,这些方法由于仅仅利用标准的自我关注推理而产生了基本的短视,因此也深受其害。在本文件中,我们引入了有效的混合SR网络,以汇总浓缩特征,包括CNN的本地特征和变压器捕获的长距离多尺度依赖物。具体地说,我们的网络包括变压器和变压器分支,这些分支在恢复程序期间对每个代表物进行同步补充。此外,我们提议了一个跨尺度的象征性关注模块,允许变压器分支有效地利用不同尺度的象征物之间的信息关系。我们提出的方法在众多基准数据集上实现了最先进的SR结果。