The Robotics community has started to heavily rely on increasingly realistic 3D simulators for large-scale training of robots on massive amounts of data. But once robots are deployed in the real world, the simulation gap, as well as changes in the real world (e.g. lights, objects displacements) lead to errors. In this paper, we introduce Sim2RealViz, a visual analytics tool to assist experts in understanding and reducing this gap for robot ego-pose estimation tasks, i.e. the estimation of a robot's position using trained models. Sim2RealViz displays details of a given model and the performance of its instances in both simulation and real-world. Experts can identify environment differences that impact model predictions at a given location and explore through direct interactions with the model hypothesis to fix it. We detail the design of the tool, and case studies related to the exploit of the regression to the mean bias and how it can be addressed, and how models are perturbed by the vanish of landmarks such as bikes.
翻译:机器人界已开始严重依赖日益现实的 3D 模拟器对机器人进行大规模的数据数量培训。 但一旦机器人在现实世界中部署,模拟差距以及真实世界的变化(如灯光、天体迁移)会导致错误。 在本文中,我们引入了Sim2RealViz, 这是一种视觉分析工具, 帮助专家理解并缩小机器人自我定位估计任务方面的这一差距, 即使用经过培训的模型估计机器人的位置。 Sim2RealViz 展示了特定模型的细节及其在模拟和现实世界中的表现。 专家们可以识别影响模型在特定地点预测的环境差异, 并通过与模型假设的直接互动来探索如何修正它。 我们详细介绍了工具的设计, 以及与利用回归到中度偏差以及如何处理回归有关的案例研究, 以及模型如何被自行车等标志的消失所困扰。