Motivated by the recent empirical success of incorporating public data into differentially private learning, we theoretically investigate how a shared representation learned from public data can improve private learning. We explore two common scenarios of transfer learning for linear regression, both of which assume the public and private tasks (regression vectors) share a low-rank subspace in a high-dimensional space. In the first single-task transfer scenario, the goal is to learn a single model shared across all users, each corresponding to a row in a dataset. We provide matching upper and lower bounds showing that our algorithm achieves the optimal excess risk within a natural class of algorithms that search for the linear model within the given subspace estimate. In the second scenario of multitask model personalization, we show that with sufficient public data, users can avoid private coordination, as purely local learning within the given subspace achieves the same utility. Taken together, our results help to characterize the benefits of public data across common regimes of private transfer learning.
翻译:暂无翻译