Surface crack segmentation poses a challenging computer vision task as background, shape, colour and size of cracks vary. In this work we propose optimized deep encoder-decoder methods consisting of a combination of techniques which yield an increase in crack segmentation performance. Specifically we propose a decoder-part for an encoder-decoder based deep learning architecture for semantic segmentation and study its components to achieve increased performance. We also examine the use of different encoder strategies and introduce a data augmentation policy to increase the amount of available training data. The performance evaluation of our method is carried out on four publicly available crack segmentation datasets. Additionally, we introduce two techniques into the field of surface crack segmentation, previously not used there: Generating results using test-time-augmentation and performing a statistical result analysis over multiple training runs. The former approach generally yields increased performance results, whereas the latter allows for more reproducible and better representability of a methods results. Using those aforementioned strategies with our proposed encoder-decoder architecture we are able to achieve new state of the art results in all datasets.
翻译:由于背景、形状、颜色和裂缝大小各异,地表裂缝截面构成一项具有挑战性的计算机视觉任务。在这项工作中,我们建议采用由各种技术组合组成的优化深解码解码器-解码器方法,这些技术可以增加裂缝分解性能。具体地说,我们建议为基于编码解码器-解码器的深深学习结构提供一个解码器部分,用于语义分解,并研究其组成部分,以提高性能。我们还审查不同编码器战略的使用情况,并采用数据增强政策,以增加现有培训数据的数量。我们的方法的绩效评估是在四个公开的裂缝分解数据集中进行的。此外,我们把两种技术引入地表裂分解法领域,这些技术以前没有在其中使用:利用测试-加速和对多个培训运行进行统计结果分析来产生结果。前一种方法通常产生更高的性能结果,而后者使得方法结果能够更能再生和更有代表性。利用上述战略来增加现有培训数据数量。我们提议的分解码器-解码结构可以实现艺术结果的新状态。