Surface crack segmentation poses a challenging computer vision task as background, shape, colour and size of cracks vary. In this work we propose optimized deep encoder-decoder methods consisting of a combination of techniques which yield an increase in crack segmentation performance. Specifically we propose a decoder-part for an encoder-decoder based deep learning architecture for semantic segmentation and study its components to achieve increased performance. We also examine the use of different encoder strategies and introduce a data augmentation policy to increase the amount of available training data. The performance evaluation of our method is carried out on four publicly available crack segmentation datasets. Additionally, we introduce two techniques into the field of surface crack segmentation, previously not used there: Generating results using test-time-augmentation and performing a statistical result analysis over multiple training runs. The former approach generally yields increased performance results, whereas the latter allows for more reproducible and better representability of a methods results. Using those aforementioned strategies with our proposed encoder-decoder architecture we are able to achieve new state of the art results in all datasets.


翻译:由于背景、形状、颜色和裂缝大小各异,地表裂缝截面构成一项具有挑战性的计算机视觉任务。在这项工作中,我们建议采用由各种技术组合组成的优化深解码解码器-解码器方法,这些技术可以增加裂缝分解性能。具体地说,我们建议为基于编码解码器-解码器的深深学习结构提供一个解码器部分,用于语义分解,并研究其组成部分,以提高性能。我们还审查不同编码器战略的使用情况,并采用数据增强政策,以增加现有培训数据的数量。我们的方法的绩效评估是在四个公开的裂缝分解数据集中进行的。此外,我们把两种技术引入地表裂分解法领域,这些技术以前没有在其中使用:利用测试-加速和对多个培训运行进行统计结果分析来产生结果。前一种方法通常产生更高的性能结果,而后者使得方法结果能够更能再生和更有代表性。利用上述战略来增加现有培训数据数量。我们提议的分解码器-解码结构可以实现艺术结果的新状态。

0
下载
关闭预览

相关内容

商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Arxiv
8+阅读 · 2021年6月1日
Image Segmentation Using Deep Learning: A Survey
Arxiv
44+阅读 · 2020年1月15日
Deep learning for cardiac image segmentation: A review
Arxiv
21+阅读 · 2019年11月9日
VIP会员
相关VIP内容
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员