The loss of an upper limb can have a substantial impact on a person's quality of life since it limits a person's ability to work, interact, and perform daily duties independently. Artificial limbs are used in prosthetics to help people who have lost limbs enhance their function and quality of life. Despite significant breakthroughs in prosthetic technology, rejection rates for complex prosthetic devices remain high[1]-[5]. A quarter to a third of upper-limb amputees abandon their prosthetics due to a lack of comprehension of the technology. The most extensively used method for monitoring muscle activity and regulating the prosthetic arm, surface electromyography (sEMG), has significant drawbacks, including a low signal-to-noise ratio and poor amplitude resolution[6]-[8].Unlike myoelectric control systems, which use electrical muscle activation to calculate end-effector velocity, our strategy employs ultrasound to directly monitor mechanical muscle deformation and then uses the extracted signals to proportionally control end-effector location. This investigation made use of four separate hand motions performed by three physically healthy volunteers. A virtual robotic hand simulation was created using ROS. After witnessing performance comparable to that of a hand with very less training, we concluded that our control method is reliable and natural.


翻译:丧失上肢会对一个人的生活质量产生重大影响,因为它限制了一个人独立工作、互动和履行日常职责的能力。人工肢体被用于修复假肢,以帮助失去肢体的人提高功能和生活质量。尽管修复技术有了重大突破,复杂的假肢装置的排斥率仍然很高[1]-[5]。四分之一至三分之一的上肢截肢者由于对技术缺乏理解而放弃其假肢。最广泛的用于监测肌肉活动和管理假肢臂、表面电感学(SEMG)的方法存在重大缺陷,包括信号对噪音比率低和分辨率低[6]-[8]。与使用电动动电动控制系统一样,我们的战略利用超声波直接监测机械肌肉变形,然后使用提取的信号按比例控制终端效应位置。这次调查使用了由三名身体健康的志愿者执行的四部手动作。虚拟手模拟是用ROS制作的,我们用非常可靠的方法见证了我们不那么可靠的自然的操作,我们完成了一种非常可靠的手控方法。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
101+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
4+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月23日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
4+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员