Conversational AI systems (e.g. Alexa, Siri, Google Assistant, etc.) need to understand queries with defects to ensure robust conversational understanding and reduce user frictions. The defective queries are often induced by user ambiguities and mistakes, or errors in the automatic speech recognition (ASR) and natural language understanding (NLU). Personalized query rewriting (personalized QR) targets reducing defects in the torso and tail user query traffic, and it typically relies on an index of past successful user interactions with the conversational AI. This paper presents our "Collaborative Query Rewriting" approach that focuses on rewriting novel user interactions unseen in the user history. This approach builds a "user Feedback Interaction Graph" (FIG) consisting of historical user-entity interactions, and leverages multi-hop customer affinity to enrich each user's index (i.e. the Collaborative User Index) that would help cover future unseen defective queries. To counteract the precision degradation from the enlarged index, we introduced additional transformer layers to the L1 retrieval model and added multi-hop affinity and guardrail features to the L2 re-ranking model. Given the production constraints of storage cost and runtime retrieval latency, managing the size of the Collaborative User Index is important. As the user index can be pre-computed, we explored using a Large Language Model (LLM) for multi-hop customer affinity retrieval on the Video/Music domains. In particular, this paper looked into the Dolly-V2 7B model. Given limited user index size, We found the user index derived from fine-tuned Dolly-V2 generation significantly enhanced coverage of unseen user interactions. Consequently, this boosted QR performance on unseen user interactions compared to the graph traversal based user index.


翻译:暂无翻译

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
75+阅读 · 2021年9月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年7月12日
Arxiv
26+阅读 · 2018年9月21日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员