Topological data analysis is an emerging field that applies the study of topological invariants to data. Perhaps the simplest of these invariants is the number of connected components or clusters. In this work, we explore a topological framework for cluster analysis and show how it can be used as a basis for explainability in unsupervised data analysis. Our main object of study will be hierarchical data structures referred to as Topological Hierarchical Decompositions (THDs). We give a number of examples of how traditional clustering algorithms can be topologized, and provide preliminary results on the THDs associated with Reeb graphs and the mapper algorithm. In particular, we give a generalized construction of the mapper functor as a pixelization of a cosheaf in order to generalize multiscale mapper.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年2月5日
Arxiv
0+阅读 · 2024年2月5日
Arxiv
0+阅读 · 2024年2月2日
Arxiv
0+阅读 · 2024年2月1日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年2月5日
Arxiv
0+阅读 · 2024年2月5日
Arxiv
0+阅读 · 2024年2月2日
Arxiv
0+阅读 · 2024年2月1日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员