This paper studies generalized truncated moment problems with unbounded sets. First, we study geometric properties of the truncated moment cone and its dual cone of nonnegative polynomials. By the technique of homogenization, we give a convergent hierarchy of Moment-SOS relaxations for approximating these cones. With them, we give a Moment-SOS method for solving generalized truncated moment problems with unbounded sets. Finitely atomic representing measures, or certificates for their nonexistence, can be obtained by the proposed method. Numerical experiments and applications are also given.
翻译:本文研究无界集体的时空问题。 首先,我们研究短时锥体及其非负多边锥体的双锥体的几何特性。 通过同质化技术,我们给这些锥体的近似吸附性运动-SOS松动提供了一个趋同的层次。 有了它们,我们给出了一种用无界集体解决普遍短时问题的速度-SOS方法。 可以通过拟议方法获得简单原子代表其不存在的措施或证书。 也给出了数字实验和应用。