Given a set $P$ of points in the plane, a point burning process is a discrete time process to burn all the points of $P$ where fires must be initiated at the given points. Specifically, the point burning process starts with a single burnt point from $P$, and at each subsequent step, burns all the points in the plane that are within one unit distance from the currently burnt points, as well as one other unburnt point of $P$ (if exists). The point burning number of $P$ is the smallest number of steps required to burn all the points of $P$. If we allow the fire to be initiated anywhere, then the burning process is called an anywhere burning process, and the corresponding burning number is called anywhere burning number. Computing the point and anywhere burning number is known to be NP-hard. In this paper we show that both these problems admit PTAS in one dimension. We then show that in two dimensions, point burning and anywhere burning are $(1.96296+\varepsilon)$ and $(1.92188+\varepsilon)$ approximable, respectively, for every $\varepsilon>0$, which improves the previously known $(2+\varepsilon)$ factor for these problems. We also observe that a known result on set cover problem can be leveraged to obtain a 2-approximation for burning the maximum number of points in a given number of steps. We show how the results generalize if we allow the points to have different fire spreading rates. Finally, we prove that even if the burning sources are given as input, finding a point burning sequence itself is NP-hard.


翻译:鉴于平面点数的设定值为$P美元,点燃烧过程是一个离散的时间过程,可以燃烧所有点点点,因为必须在给定点点点点点起火。具体地说,点燃烧过程从一个点点点起,从一个点点起,然后在每个步骤点点起,烧掉飞机上与目前燃烧点距离内的所有点,以及另一个未燃烧点点点点点(如果存在的话),点燃烧次数是燃烧所有点点点点点(P$)所需的最小步骤数。如果我们允许在任何地点点点起火,那么燃烧过程就叫一个不同点点点点点点点起,而相应的燃烧次数则在任何燃烧点点点点点点点点点点点点起,已知点点点点点点点点点点点点点点点点点点点是NPP-硬的。在本文中显示,在两个层面,点点点点点点点点点点点点点点烧和点点烧点数是给定的(P),如果我们给出了1.988-瓦列普斯朗)一般点点点点点点点点点点点点点起火,,那么我们的燃烧速度也可以控制点点点点点点点点点点点点点点点点点点点点点点点点点点点点点点点点点点点点点点点点点数。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月31日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员