This paper presents a two-stage online phase reconstruction framework using causal deep neural networks (DNNs). Phase reconstruction is a task of recovering phase of the short-time Fourier transform (STFT) coefficients only from the corresponding magnitude. However, phase is sensitive to waveform shifts and not easy to estimate from the magnitude even with a DNN. To overcome this problem, we propose to use DNNs for estimating differences of phase between adjacent time-frequency bins. We show that convolutional neural networks are suitable for phase difference estimation, according to the theoretical relation between partial derivatives of STFT phase and magnitude. The estimated phase differences are used for reconstructing phase by solving a weighted least squares problem in a frame-by-frame manner. In contrast to existing DNN-based phase reconstruction methods, the proposed framework is causal and does not require any iterative procedure. The experiments showed that the proposed method outperforms existing online methods and a DNN-based method for phase reconstruction.
翻译:本文件介绍了一个使用因果深神经网络(DNN)的两阶段在线阶段重建框架。阶段重建是一项仅从相应规模恢复短期Fourier变异系数(STFT)的阶段的任务。然而,阶段对波形变异很敏感,即使对DNN也不容易估计其规模。为了解决这一问题,我们提议使用DNN来估计相邻时频箱之间的阶段差异。我们表明,根据STFT阶段部分衍生物与规模之间的理论关系,动态神经网络适合进行阶段差异估计。估计阶段差异用于以框架方式解决加权最小方位问题来重建阶段。与现有的基于DNNN的阶段重建方法相比,拟议框架是因果性的,不需要任何迭接程序。实验表明,拟议方法超越了现有的在线方法和基于DNN的分阶段重建方法。