Negotiation, as an essential and complicated aspect of online shopping, is still challenging for an intelligent agent. To that end, we propose the Price Negotiator, a modular deep neural network that addresses the unsolved problems in recent studies by (1) considering images of the items as a crucial, though neglected, source of information in a negotiation, (2) heuristically finding the most similar items from an external online source to predict the potential value and an acceptable agreement price, (3) predicting a general price-based action at each turn which is fed into the language generator to output the supporting natural language, and (4) adjusting the prices based on the predicted actions. Empirically, we show that our model, that is trained in both supervised and reinforcement learning setting, significantly improves negotiation on the CraigslistBargain dataset, in terms of the agreement price, price consistency, and dialogue quality.


翻译:作为在线购物的一个基本和复杂的方面,谈判对于智能剂来说仍然具有挑战性。 为此,我们建议价格谈判者,这是一个模块式的深层神经网络,解决最近研究中尚未解决的问题,其方法是:(1) 将项目图像视为谈判中至关重要但被忽视的信息来源,(2) 从外部在线来源找到最相似的项目,以预测潜在价值和可接受的协议价格,(3) 预测每个转弯都采取以价格为基础的一般行动,将其输入语言生成器,以输出支持的自然语言,(4) 根据预测的行动调整价格。 我们生动地表明,在监管和强化学习环境方面受过培训的我们的模式,在协议价格、价格一致性和对话质量方面大大改进了关于克雷格斯利斯特-巴莱昂数据集的谈判。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Arxiv
6+阅读 · 2018年6月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员