Internet memes have become an increasingly pervasive form of contemporary social communication that attracted a lot of research interest recently. In this paper, we analyze the data of 129,326 memes collected from Reddit in the middle of March, 2020, when the most serious coronavirus restrictions were being introduced around the world. This article not only provides a looking glass into the thoughts of Internet users during the COVID-19 pandemic but we also perform a content-based predictive analysis of what makes a meme go viral. Using machine learning methods, we also study what incremental predictive power image related attributes have over textual attributes on meme popularity. We find that the success of a meme can be predicted based on its content alone moderately well, our best performing machine learning model predicts viral memes with AUC=0.68. We also find that both image related and textual attributes have significant incremental predictive power over each other.


翻译:在本文中,我们分析了在2020年3月中旬从Reddit收集的129 326个Memes的数据,当时世界各地正在引入最严重的冠状病毒限制。这一条不仅为在COVID-19大流行期间互联网用户的想法提供了一个审视的玻璃,而且我们还对是什么使Meme病毒传播了基于内容的预测性分析。我们使用机器学习方法,还研究了哪些与预测力图像相关的递增属性超过Meme流行的文字属性。我们发现,光凭其内容即可预测Meme的成功,我们最有效果的机器学习模型预测了AUC=0.68的病毒模式。我们还发现,与图像有关的和文字属性对彼此具有重要的递增预测力。

0
下载
关闭预览

相关内容

【MIT干货书】机器学习算法视角,126页pdf
专知会员服务
77+阅读 · 2021年1月25日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
0+阅读 · 2021年3月12日
VIP会员
相关资讯
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员