Recent high-profile cyber attacks exemplify why organizations need better cyber defenses. Cyber threats are hard to accurately predict because attackers usually try to mask their traces. However, they often discuss exploits and techniques on hacking forums. The community behavior of the hackers may provide insights into groups' collective malicious activity. We propose a novel approach to predict cyber events using sentiment analysis. We test our approach using cyber attack data from 2 major business organizations. We consider 3 types of events: malicious software installation, malicious destination visits, and malicious emails that surpassed the target organizations' defenses. We construct predictive signals by applying sentiment analysis on hacker forum posts to better understand hacker behavior. We analyze over 400K posts generated between January 2016 and January 2018 on over 100 hacking forums both on surface and Dark Web. We find that some forums have significantly more predictive power than others. Sentiment-based models that leverage specific forums can outperform state-of-the-art deep learning and time-series models on forecasting cyber attacks weeks ahead of the events.


翻译:最近高知名度的网络袭击说明了为什么组织需要更好的网络防御。网络威胁很难准确预测,因为攻击者通常试图掩盖其痕迹。然而,他们经常讨论黑客论坛的利用和技术。黑客的社区行为可以提供对团体集体恶意活动的洞察力。我们提出一种新的方法来利用情绪分析来预测网络事件。我们用两个主要商业组织的网络袭击数据来测试我们的方法。我们考虑三种类型的事件:恶意软件安装、恶意目的地访问和超过目标组织的恶意电子邮件。我们通过对黑客论坛文章应用情绪分析来建立预测信号,以更好地了解黑客行为。我们分析了2016年1月至2018年1月在地面和黑暗网络100多个黑客论坛上产生的400K号邮件。我们发现,一些论坛比其他论坛更具有预测力。利用特定论坛的基于感官的模型可以超越事件周前预测网络袭击的状态深层次学习和时间序列模型。

3
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
已删除
AI掘金志
7+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
10+阅读 · 2017年7月4日
Arxiv
5+阅读 · 2015年9月14日
VIP会员
相关资讯
已删除
AI掘金志
7+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员