This study examines the time complexities of the unbalanced optimal transport problems from an algorithmic perspective for the first time. We reveal which problems in unbalanced optimal transport can/cannot be solved efficiently. Specifically, we prove that the Kantorovich Rubinstein distance and optimal partial transport in the Euclidean metric cannot be computed in strongly subquadratic time under the strong exponential time hypothesis. Then, we propose an algorithm that solves a more general unbalanced optimal transport problem exactly in quasi-linear time on a tree metric. The proposed algorithm processes a tree with one million nodes in less than one second. Our analysis forms a foundation for the theoretical study of unbalanced optimal transport algorithms and opens the door to the applications of unbalanced optimal transport to million-scale datasets.


翻译:本研究首次从算法角度审查了不平衡的最佳运输问题的时间复杂性。 我们首次从算法角度揭示了不平衡的最佳运输不均/无法有效解决的一些问题。 具体地说, 我们证明坎托罗维奇·鲁宾斯坦的距离和欧clidean 度量的优化部分运输不能在强烈指数时间假设下以强烈的亚水边时间计算。 然后, 我们提出了一个算法, 解决更普遍的不平衡最佳运输问题, 恰好在树的准线性时间。 提议的算法处理一棵树, 其100万个节点在不到一秒的时间里。 我们的分析构成了对不平衡的最佳运输算法的理论研究的基础, 并为将不平衡的最佳运输应用到百万尺度的数据集打开了大门。

1
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LASSO回归与XGBoost:融合模型预测房价
论智
32+阅读 · 2018年8月8日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年3月4日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LASSO回归与XGBoost:融合模型预测房价
论智
32+阅读 · 2018年8月8日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员