We put forth a long short-term memory (LSTM) nudging framework for the enhancement of reduced order models (ROMs) of fluid flows utilizing noisy measurements for air traffic improvements. Toward emerging applications of digital twins in aviation, the proposed approach allows for constructing a realtime predictive tool for wake-vortex transport and decay systems. We build on the fact that in realistic application, there are uncertainties in initial and boundary conditions, model parameters, as well as measurements. Moreover, conventional nonlinear ROMs based on Galerkin projection (GROMs) suffer from imperfection and solution instabilities, especially for advection-dominated flows with slow decay in the Kolmogorov width. In the presented LSTM nudging (LSTM-N) approach, we fuse forecasts from a combination of imperfect GROM and uncertain state estimates, with sparse Eulerian sensor measurements to provide more reliable predictions in a dynamical data assimilation framework. We illustrate our concept by solving a two-dimensional vorticity transport equation. We investigate the effects of measurements noise and state estimate uncertainty on the performance of the LSTM-N behavior. We also demonstrate that it can sufficiently handle different levels of temporal and spatial measurement sparsity, and offer a huge potential in developing next-generation digital twin technologies.


翻译:我们提出了一个长期短期内存(LSTM)框架,用于利用对空中交通改进的噪音测量,加强流体流的减序模型(ROMs),从而改进流体的减序模型(ROMs)。关于数字双胞胎在航空中的新兴应用,拟议方法允许为回转旋涡流和衰变系统建立一个实时预测工具。我们以以下事实为基础:在现实应用中,初始和边界条件、模型参数以及测量方面存在着不确定性。此外,基于Galerkin投影(GROMs)的常规非线性非线性ROM(ROMs)存在不完善和溶解性,特别是对于在科尔莫戈罗夫宽度缓慢衰减的吸附性流而言。在介绍的LSTM-N方法(LSTM-N)中,我们用不完善的GROM(LSTM-N)和不确定的状态估计组合组合,我们用稀有的Eullian传感器测量方法在动态数据同化框架内提供更可靠的预测。我们通过解决两维的体性软体运输方程式来说明我们的概念。我们调查测量噪音和状态对LSTMN行为性表现的不确定性的影响的影响。我们还展示了在下一个空间和空间上的巨大程度。我们还展示了它的潜力。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
《自然》(20190829出版)一周论文导读
科学网
6+阅读 · 2019年8月30日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
论文浅尝 | Hike: A Hybrid Human-Machine Method for Entity Alignment
开放知识图谱
4+阅读 · 2017年12月30日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
VIP会员
相关资讯
《自然》(20190829出版)一周论文导读
科学网
6+阅读 · 2019年8月30日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
论文浅尝 | Hike: A Hybrid Human-Machine Method for Entity Alignment
开放知识图谱
4+阅读 · 2017年12月30日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员