We put forth a long short-term memory (LSTM) nudging framework for the enhancement of reduced order models (ROMs) of fluid flows utilizing noisy measurements for air traffic improvements. Toward emerging applications of digital twins in aviation, the proposed approach allows for constructing a realtime predictive tool for wake-vortex transport and decay systems. We build on the fact that in realistic application, there are uncertainties in initial and boundary conditions, model parameters, as well as measurements. Moreover, conventional nonlinear ROMs based on Galerkin projection (GROMs) suffer from imperfection and solution instabilities, especially for advection-dominated flows with slow decay in the Kolmogorov width. In the presented LSTM nudging (LSTM-N) approach, we fuse forecasts from a combination of imperfect GROM and uncertain state estimates, with sparse Eulerian sensor measurements to provide more reliable predictions in a dynamical data assimilation framework. We illustrate our concept by solving a two-dimensional vorticity transport equation. We investigate the effects of measurements noise and state estimate uncertainty on the performance of the LSTM-N behavior. We also demonstrate that it can sufficiently handle different levels of temporal and spatial measurement sparsity, and offer a huge potential in developing next-generation digital twin technologies.
翻译:我们提出了一个长期短期内存(LSTM)框架,用于利用对空中交通改进的噪音测量,加强流体流的减序模型(ROMs),从而改进流体的减序模型(ROMs)。关于数字双胞胎在航空中的新兴应用,拟议方法允许为回转旋涡流和衰变系统建立一个实时预测工具。我们以以下事实为基础:在现实应用中,初始和边界条件、模型参数以及测量方面存在着不确定性。此外,基于Galerkin投影(GROMs)的常规非线性非线性ROM(ROMs)存在不完善和溶解性,特别是对于在科尔莫戈罗夫宽度缓慢衰减的吸附性流而言。在介绍的LSTM-N方法(LSTM-N)中,我们用不完善的GROM(LSTM-N)和不确定的状态估计组合组合,我们用稀有的Eullian传感器测量方法在动态数据同化框架内提供更可靠的预测。我们通过解决两维的体性软体运输方程式来说明我们的概念。我们调查测量噪音和状态对LSTMN行为性表现的不确定性的影响的影响。我们还展示了在下一个空间和空间上的巨大程度。我们还展示了它的潜力。