In class-incremental semantic segmentation (CISS), deep learning architectures suffer from the critical problems of catastrophic forgetting and semantic background shift. Although recent works focused on these issues, existing classifier initialization methods do not address the background shift problem and assign the same initialization weights to both background and new foreground class classifiers. We propose to address the background shift with a novel classifier initialization method which employs gradient-based attribution to identify the most relevant weights for new classes from the classifier's weights for the previous background and transfers these weights to the new classifier. This warm-start weight initialization provides a general solution applicable to several CISS methods. Furthermore, it accelerates learning of new classes while mitigating forgetting. Our experiments demonstrate significant improvement in mIoU compared to the state-of-the-art CISS methods on the Pascal-VOC 2012, ADE20K and Cityscapes datasets.
翻译:虽然最近的工作侧重于这些问题,但现有的分类初始化方法并没有解决背景转变问题,也没有为背景和新的地表类分类师分配同样的初始化权重。我们提议采用一种新型分类初始化方法来解决背景转变问题,这种方法采用基于梯度的分类初始化方法,从先前背景的分类器重量中确定新类别最相关的权重,并将这些权重转移到新的分类器。这种热启动权重初始化提供了适用于若干种分类法的一般解决方案。此外,它加快了新班级的学习,同时减缓了遗忘。我们的实验表明,与2012年帕斯卡尔-VOC、2012年、ADE20K和城市景数据集中最新的CISS方法相比,MIOU取得了显著的改进。