Incremental semantic segmentation(ISS) is an emerging task where old model is updated by incrementally adding new classes. At present, methods based on convolutional neural networks are dominant in ISS. However, studies have shown that such methods have difficulty in learning new tasks while maintaining good performance on old ones (catastrophic forgetting). In contrast, a Transformer based method has a natural advantage in curbing catastrophic forgetting due to its ability to model both long-term and short-term tasks. In this work, we explore the reasons why Transformer based architecture are more suitable for ISS, and accordingly propose propose TISS, a Transformer based method for Incremental Semantic Segmentation. In addition, to better alleviate catastrophic forgetting while preserving transferability on ISS, we introduce two patch-wise contrastive losses to imitate similar features and enhance feature diversity respectively, which can further improve the performance of TISS. Under extensive experimental settings with Pascal-VOC 2012 and ADE20K datasets, our method significantly outperforms state-of-the-art incremental semantic segmentation methods.


翻译:递增语义分解( ISS) 是一个新兴任务, 旧模型通过渐进式添加新类别更新。 目前, 基于进化神经网络的方法在国际空间站中占主导地位。 但是, 研究表明, 这种方法在学习新任务的同时难以在老任务上保持良好的表现( 灾难性的遗忘 ) 。 相反, 以变异器为基础的方法在遏制灾难性的遗忘方面具有自然优势, 因为它有能力模拟长期和短期任务。 在这项工作中, 我们探讨了基于变异器的建筑更适合国际空间站的原因, 并相应提出了基于变异器的递增语义分解法。 此外, 为了更好地减轻灾难性的遗忘, 同时保护国际空间站的可转移性, 我们引入了两种偏差的对比性损失, 分别模仿相似的特征, 并增强特征的多样性, 这可以进一步提高 TISS的性能。 在广泛实验环境中, Pascal- VOC 2012 和 ADE20K 数据集下, 我们的方法大大优于最新式的递增语义分解方法。

0
下载
关闭预览

相关内容

作为2006年开始的年度会议系列,ACM ISS(以前称为ACM ITS,互动桌面和表面国际会议)是研究新的和新兴的桌面、数字表面、互动空间和多表面技术的设计、开发和使用的首要场所。官网链接:https://iss.acm.org/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月16日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员