Image harmonization is a critical task in computer vision, which aims to adjust the fore-ground to make it compatible with the back-ground. Recent works mainly focus on using global transformation (i.e., normalization and color curve rendering) to achieve visual consistency. However, these model ignore local consistency and their model size limit their harmonization ability on edge devices. Inspired by the dynamic deep networks that adapt the model structures or parameters conditioned on the inputs, we propose a hierarchical dynamic network (HDNet) for efficient image harmonization to adapt the model parameters and features from local to global view for better feature transformation. Specifically, local dynamics (LD) and mask-aware global dynamics (MGD) are applied. LD enables features of different channels and positions to change adaptively and improve the representation ability of geometric transformation through structural information learning. MGD learns the representations of fore- and back-ground regions and correlations to global harmonization. Experiments show that the proposed HDNet reduces more than 80\% parameters compared with previous methods but still achieves the state-of-the-art performance on the popular iHarmony4 dataset. Our code is avaliable in https://github.com/chenhaoxing/HDNet.
翻译:计算机图像统一是计算机愿景中的一个关键任务,目的是调整前方的地面,使其与后方相容。最近的工作主要侧重于利用全球转型(即正常化和颜色曲线转换)实现视觉一致性。然而,这些模型忽略了地方一致性,其模型大小限制了其在边缘设备上的统一能力。受动态的深网络的启发,这些网络根据投入条件调整了模型结构或参数,我们提议了一个等级动态网络(HDNet),以便有效地调整图像统一,使模型参数和特征从地方到全球,以更好地进行地貌转型。具体地说,应用了地方动态(LD)和掩码全球动态(MGD)。LD使不同渠道和位置的特征能够通过结构信息学习来适应性地改变和提高几何转换的代表性能力。MGD学会了前方和后方区域的表现以及与全球协调的关联。实验显示,拟议的HDNet比以前的方法减少了80%以上参数,但仍在通用的 iHarmony4数据集上实现状态-艺术性表现。我们的代码可以在 http://gighhaus/coming.avalliable.