Guessing Random Additive Noise Decoding (GRAND) is a recently proposed universal Maximum Likelihood (ML) decoder for short-length and high-rate linear block-codes. Soft-GRAND (SGRAND) is a prominent soft-input GRAND variant, outperforming the other GRAND variants in decoding performance; nevertheless, SGRAND is not suitable for parallel hardware implementation. Ordered Reliability Bits-GRAND (ORBGRAND) is another soft-input GRAND variant that is suitable for parallel hardware implementation, however it has lower decoding performance than SGRAND. In this paper, we propose List-GRAND (LGRAND), a technique for enhancing the decoding performance of ORBGRAND to match the ML decoding performance of SGRAND. Numerical simulation results show that LGRAND enhances ORBGRAND's decoding performance by $0.5-0.75$ dB for channel-codes of various classes at a target FER of $10^{-7}$. For linear block codes of length $127/128$ and different code-rates, LGRAND's VLSI implementation can achieve an average information throughput of $47.27-51.36$ Gbps. In comparison to ORBGRAND's VLSI implementation, the proposed LGRAND hardware has a $4.84\%$ area overhead.


翻译:随机随机添加添加噪音标记(GRAND)是最近提议的一种通用最大允许值(ML)解码器,用于短期和高容量线性成块码。软GRAND(SGRAND)是一个显著的软投入GRAND变体,优于其他GRAND变体,在解码性能方面优于其他GRAND变体;然而,SGRAND并不适合于平行的硬件执行。有顺序的 Refority Bit-GRAND(ORBGRAND)是另一个适合平行硬件执行的软投入GRAND变体,但比SGRAND的解码性能要低。在本文中,我们提出LOSGRAND(LGAND)的解码性能提高ORBAND(OD)的解码性能技术,在10美元至7美元的指标FER(FER)下,对各等级的频道代码代码代码值值进行修改。在127—128美元和不同的代码区域执行中,LGRAADADA(O)可达到一个平均的域域域域。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月2日
Arxiv
20+阅读 · 2021年9月22日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员